NordDATA-69

11-14 juni - Stockholm

Kongressforedrag



ON ARITHMETIC EXPRESSIONS AND TREES

Roman_R_Redzielowski, IBM Nordic Laboratory, Lidingd, Sweden
presently on leave, at the Laboratory for Puise and Digital
Techniques, The Technical University of Denmark, Lyngby,

Denmark).

1. INTRODUCTION.

The structure of an arithmetic expression Is often
represented in the form of a tree. By projecting the vertices
of such a tree on a straight line, one can represent also an
order of evaluating this expression, and thus a certain
program of the computation. As shown below, some properties of
the program, such as its length and storage requirement are
then represented in a quite straightforward manner. This may
help to a better understanding of certain relationships, and
be of some use for the compiler design.

2. BASIC CONCEPTS.

To evaluate an expression, e.g. ((a+b)-cxd)/(ex(f-g)), one
has to compute a number of partjal_results: Ascxd, B=a+b,
C=B-A, D=f-g, E=exD, and the final_result F=C/E, in a number
of elementary steps, or operations. This process can be
represented by a directed graph, as In Fig.l. Each vertex of
this graph represents one elementary operation. Each arc
represents one partial result, and always leads from the place
where the partial result is wused to the place whéere it |is
computed., .

In the following, the operations and the vertices
corresponding to them are denoted by letlers p,Q,r,...;X;¥eZ,
sometimes followed by indices, e.g. x[1],x[2],x[i],etc. The
arcs are written In the form (x,y), where x is the Initiatl,
and y the terminal vertex of the arc.

A vertex r having the property that for every vertex x#r
there exlists a path from x to r is called here a rggt of the
graph; it is easy to see that the vertex corresponding to the
final operation Is such a root.

A vertex that is not the Initial vertex of any arc Iis
called here a Jgaf of the graph; It Is easy to see that each
operation performed entirely on initial data is represented by
such a leaf,

A finite graph with a root r such that:

(a) r is not the terminal vertex of any arc,

(b) every vertex x}r is the terminal vertex of exactly one arc
Is called here a tree. It is easy to see that the graph such
as in Fig.l will always be a tree.

The structure of a tree (as well as that of the expression)
Is known to be recursive., In particular, every vertex of a
tree is the root of some subtree (every partial result Is the

C1 207



final result of some partial computation). In the following,
the subtree having a vertex x as 1Its root |Is called the

E;-;emovlng from a tree T Its root, we obtain a collection
of n>0 disjoint trees. In the following, we call these
trees the main_subtrees of T.

3. LINEUP OF A TREE.

Choosing a feasible order for the operations is equivalent
to a topological sorting of the tree of Fig.l, i.e. to placing
its vertices in such a sequence that a vertex x precedes a
vertex vy If there is an arc from y to x, for every pair Xx,Y.
In the following, a sequence satisfying this requirement |is
called a Jljoeup of the tree. It can be conveniently
represented as in Fig.2. The diagram of Fig.2 can be regarded
as a timescale representation of the computation; it reflects
not only the succession of operations, but also the history of
all partial results,

4, INTERMEDIATE STORAGE.

Suppose we take an Instantaneous plcture of the computation
while executing an operation x., Such a picture will show some
results of the previous operations being stored for further
use and not participating in x. In Fig.2, these stored results
are represented by arcs passing over the vertex x. If the
number of these arcs is m, we must have at least m+l storage
elements at our disposal at the considered moment: m for the
resuits already stored, and one for the result of x.

The size of the storage we have to reserve for the entire
computation is thus determined by the maximum number of arcs
passing over a single vertex in Fig.2; we call here this

© number the >width< of the lineup. It can be formally defined
as follows,

DEFINITION, Let L=(x[1],x[2],...,x[n]) be a lineup of a tree
T. For this lineup, let m[i] be the number of arcs (x[J],x[k])
such that k<i<j, for i=1,2,...,n. The width of L, denoted
W(L), is then defined as the maximum of ml{i] for iI=1,2,...,4n.

The problem of minimizing the intermediate storage is thus
reduced to one of finding a minimum width lineup of a given
tree.

5. THE >MINIMUM WIDTH< THEOREM.

The minimal width we can arrive at by ordering a tree In
different ways obviously depends upon the compiexity of the
tree. For our purpose, we can characterize this complexity by

208 C1



a number that is defined as follows,

DEFINITION. The complexity of a tree T, denoted C(T), is
defined recursively as:
C(T)=max(0,CCTI0]>+0,CCT{11D+1,...,CCT[KID+K),

where T[0],...,T[k] are all the main subtrees of T, in such an

order that C(TLODD>CCTI1ID>...>C(TLkDD.

There exists the following relationship between the
complexity CCT) and the width of any lineup of T:

THEOREM 1, For every tree T and its lineup L holds W(L)>C(T).
Proof of this theorem can be found in [1].

If T is understood to represent a computation, the theorem
states that, whatever is the order of operations, we must have
at our disposal at least C(T)+1 storage cells for the partial
results, .

6. MINIMUM WIDTH LINEUP.

A lineup having the minimal width stated by Theorem 1 can
be constructed for a given tree T as follows.

ALGORITHM 1. Proceeding from leaves towards the root,
construct, for each vertex x, a lineup of the subtree T(x) as
stated under (a) and (b) below,

(a) For a leaf x, take (x) as the lineup.

(b) For a non-leaf x, take the concatenation of L{ol,
Lf1l,...,L[k] and (x), where LI[0),...,L[k] are previously
obtained lineups of all the main subtrees of T(x), ordered
accorging to their decreasing widths. (For illustration see
Fig.3).

If T is wunderstood to represent a computation, the
procedure can be viewed as constructing, step by step, some
partial programs. In the rule (b), L[0),...,L[K] represent
programs for evaluating the arguments of x; we combine them in
one program in the order of their decreasing storage
requirements., This agrees well with the common sense: the
available storage will shrink as we evaluate and store the
arguments of x,

7. LENGTH OF PROGRAM,

Let us imagine now the following idealized one-address
machine. The storage of the machine consists of a number of
memory_cells and one cell called the aggumulator. The memory
cells are identified by their addresses, here denoted by
letters: a,...2,A,...Z, The machine can execute the foliowing

instructions (¢ denotes an arbitrary address):
C1 209



- load accumulator from the cell c;

- store the contents of accumulator jn the cell c;

- add the contents of ¢ to that of accumulator;

- subtract the contents of c¢c from that of accumulator;

- multiply the contents of accumulator by that of c;

- divide the contents of accumulator by that of c.

In the following, these instructions are written as: [e, cl,
+c, -c, %c, and /c, respectively. A program Is writen as a
sequence of such instructions,

An individual operation of our computation can be now
programmed as a sequence of three instructions, e.gd. [exdAl,
[a+bB], etc. Some operations can be programmed In two
alternative ways, e.g. La+bB]l and [b+aB], [exDE] and [DxeE],
etc. A complete program for the computation represented by
Fig.2 may thus appear as follows:

[cxdAl[a+bB1[B-AC][f-gD][exDEI[C/EF].

However, in this program the pair Bl[B is redundant. We can
keep B in the accumulator in between the operations:

[cxdA][a+b-AC][f-gD)[exDEILC/EF],

thus reducing the total length of the program Cand its
execution time).,

It is easy to see that some more such palrs can be created,
and the program further improved, if we execute the operations
in a slightly changed order. It is of an obvious interest to
find an order that would maximize the number of such pairs,
and thus minimize the length of the program.

To find such an order, let us mark Iin our tree every
argument of an operation that can be placed in the accumulator
prior to the operation. In our case, these marked arcs will be
‘B,C and D (see Fig.4)., Choosing some order of operations, we
obtain a diagram such. as in Fig.5. It Is easy to see that in
Fig.5 every partial result that need not be transferred to a
memory cell and back is represented by a marked arc appearing
in the same line as all the vertices. In the following, we
call such an arc a >bridge<.

DEFINITION. Let T be a tree with some arcs marked. Let
L=C(x[1],x[2],00.4x[n]) be a Tineup of T, A bridge s defined
as a marked arc of the form (x[i-1]1,x[1]), where 1<ign.

The problem of constructing the optimal order of operations
is thus reduced to one of constructing, for a given tree T and
marking of its arcs, a lineup containing the greatest possible
number of bridges.

8., THE >BRIDGE< THEOREM.

The maximum possible number of bridges {Is stated by the
following theorem,

210 c1



THEOREM 2, For every tree T and marking of 1{Its arcs, the
number of bridges in any lineup of T is not greater than n-k,
where n is the number of vertices in T, and k the number of
leaves in the graph T obtained from T by removing all unmarked
arcs.

Progf. Let L=(x[1],x[2],...,x[n]) be a lineup of T. Consider -
all paifts (x[i-11,x[i]). There are n-1 such pairs. If .x[i] is
a leaf of I, the pair is not a marked arc, and thus not a
bridge. This must be true for at least k-1 such pairs; thus,
there cannot be more than n-k bridges.

If T is understood to represent a computation, the theorem
states that the program must contain at least k pairs of
>store-load< instructions (since Initially there Is n such
pairs, one for each operation).

9. LINEUP WITH MAXIMAL NUMBER OF BRIDGES.

A lineup containing exactly n-k bridges can be constructed
as follows,

ALGORITHM 2. Starting from the root of T, follow the arcs as
far as possible, and remember all arcs going >aside< from the
followed path. Upon coming to a leaf, return to one of the
remembered arcs, and repeal the procedure untii all arcs have
been traversed. During the whole travel, observe the following
rule: If a vertex x Is the Initial vertex of a marked arc,
always leave x by means of this arc. The sequence of vertices
visited in this way glves the required lineup, right-to-left.

In terms of our interpretation, the above procedure
corresponds to writing the program backwards. We program first
the final operation, and ask what we would like to have in the

“accumulator to start this operation with (this corresponds to
finding a marked arc leaving r). We find then the operation
that places in the accumulator exactly what we need, program
it as one before the last and so on.

10. FINAL REMARKS.

(a) The results presented here may be applied to evaluate
the effectivness of some compiling algorithms already in use.
One can see, in particular, that the order of operations
generated by the stack method, or the Reverse Polish notation,
Is usually not the optimal one, In both respects discussed
here.

(b) The problems discussed seem to be common for aill
situations where a tree structure is being treated In a
sequential manner. Thus, the width of a lineup has an obvious
relationship to the size of a stack neede to traverse a tree
structure in a certain order, while the Iideas appearing in

c1 211



sections 7 through 9 are related to techniques of storing tree
structures in a linear memory.

REFERENCE:
1, R.R.,REDZIEJOWSKI: On Arithmetic Expressions and Trees,
Comm,ACM, Vol.12, No 2 (February 1969), page 81.

a+b cxd f-g

Fig. 1

cxd a+b B-A f-g exD C/E

212 c1



vertex lineup width
w w [
x X o
y y o
z z (4]
t wxt 1
u u )
v yzv 1
s wxtyzvus 2
q q o
r wxtyzvusqr 2

Fig. 3

Fig. 4

Fig. 5

c1 213



