An improved construction

of deterministic w-automaton from derivatives

Roman Redziejowski

CS&P 2011

Roman Redziejowski w-automaton from derivatives

What is w-automaton?

Automaton: states, transitions

deterministic nondeterministic
b a a,b a

N oL 0 N0
~G==6 &

Roman Redziejowski w-automaton from derivatives

What is w-automaton?

Automaton: states, transitions

deterministic nondeterministic
b a a,b a

N oL 0 N0
~G==6 &

Omega-automaton:
recognizes w-languages (sets of infinite words).

Roman Redziejowski w-automaton from derivatives

What is w-automaton?

Automaton: states, transitions

deterministic nondeterministic
b a a,b a
N, N NN
~G==6) ~G——&

Omega-automaton:
recognizes w-languages (sets of infinite words).

How: infinite word w accepted < exists an accepting run on w.

Roman Redziejowski w-automaton from derivatives

What is w-automaton?

Automaton: states, transitions

deterministic nondeterministic
b a a,b a

N, N NN
~G)==6) G ——&
Omega-automaton:

recognizes w-languages (sets of infinite words).

How: infinite word w accepted < exists an accepting run on w.

Accepting run defined via set of states visited infinitely often
(Buichi, Muller, Rabin, Streett, parity...)

Roman Redziejowski w-automaton from derivatives

Alternative acceptance

b a a,b a

N, N NN
“G5—6) G

Accepting run can also be defined in terms of transitions.

Roman Redziejowski w-automaton from derivatives

Alternative acceptance

b/G a/G a,b a
N oar N NN
~@s) &)

Accepting run can also be defined in terms of transitions.

G inifinitely often & R finitely often recognizes (aUb)*(a* U b®).

Roman Redziejowski w-automaton from derivatives

Alternative acceptance

b/G a/G a,b aje
N e O N, N
~OLE -6

Accepting run can also be defined in terms of transitions.

G inifinitely often & R finitely often recognizes (aUb)*(a* U b®).

Blob e inifinitely often recognizes (a U b)*a“.

Roman Redziejowski w-automaton from derivatives

w-regular language

Each w-automaton recognizes an w-regular language
described by an w-regular expression such as
(aub)*(a¥uUb®) or (aUb)*a“.

Roman Redziejowski w-automaton from derivatives

w-regular language

Each w-automaton recognizes an w-regular language
described by an w-regular expression such as
(aub)*(a¥uUb®) or (aUb)*a“.

Recalling: w-regular language

is constructed from &, {¢}, and {a} fora € ¥
by a finite number of applications of

union, product, star, omega.

Roman Redziejowski w-automaton from derivatives

w-regular language

Each w-automaton recognizes an w-regular language
described by an w-regular expression such as
(aub)*(a¥uUb®) or (aUb)*a“.

Recalling: w-regular language

is constructed from &, {¢}, and {a} fora € ¥
by a finite number of applications of

union, product, star, omega.

(Regular language is constructed using only
union, product, and star.)

Roman Redziejowski w-automaton from derivatives

The problem

Given an an w-regular expression
construct deterministic ~ w-automaton
recognizing the language

defined by that expression.

Roman Redziejowski w-automaton from derivatives

What is derivative?

(Brzozowski 1964)

Derivative of X C ¥°° with respecttow € X*:
set of words obtained by stripping the initial w
from words in X starting with w.

owX ={z e £*|wz € X}

Roman Redziejowski w-automaton from derivatives

What is derivative?

(Brzozowski 1964)

Derivative of X C ¥°° with respecttow € X*:
set of words obtained by stripping the initial w
from words in X starting with w.

owX ={z e £*|wz € X}

Use: suppose you check if input is in X.
After reading w, remains to check if the rest is in 9, X.

Roman Redziejowski w-automaton from derivatives

Derivatives of w-regular language

Results from Brzozowski 1964, extended to w-languages.

(1) An (w-)regular language has finitely many distinct
derivatives.

Roman Redziejowski w-automaton from derivatives

Derivatives of w-regular language

Results from Brzozowski 1964, extended to w-languages.

(1) An (w-)regular language has finitely many distinct
derivatives.

(2) These derivatives are also (w-)regular and can be
effectively computed using rules such as these:

ﬁa@:f)a{s}zg, 8a(x UY):aaX UaaY,
aa{a.} =&, 8a(xY) = (83)()Y U V(X)(aaY) s

Roman Redziejowski w-automaton from derivatives

Using derivatives to recognize regular language

Identify states with languages they recognize.

Roman Redziejowski w-automaton from derivatives

Using derivatives to recognize regular language

Identify states with languages they recognize.

Suppose you start in state Dg = (aU b)*a.
If you read a, go to state 0,X = (aUb)*aUe = D;.
If you read b, go to state o,X = (aUb)*a = Dy.

Roman Redziejowski w-automaton from derivatives

Using derivatives to recognize regular language

Identify states with languages they recognize.

Suppose you start in state Dg = (aU b)*a.
If you read a, go to state 0,X = (aUb)*aUe = D;.
If you read b, go to state o,X = (aUb)*a = Dy.

From state Dy:

If there is no more input, you are done because ¢ € D;.
If you read a, go to state 9,01 = D;.

If you read b, go to state 9,D; = Dg.

Roman Redziejowski w-automaton from derivatives

Using derivatives to recognize regular language

Identify states with languages they recognize.

Suppose you start in state Dg = (aU b)*a.
If you read a, go to state 0,X = (aUb)*aUe = D;.
If you read b, go to state o,X = (aUb)*a = Dy.

From state Dy:

If there is no more input, you are done because ¢ € D;.
If you read a, go to state 9,01 = D;.

If you read b, go to state 9,D; = Dg.

Roman Redziejowski w-automaton from derivatives

Brzozowski’s derivative automaton

Automaton recognizing a regular language X.

States: distinct derivatives of X.

Initial state: 9.X.

Transitions: D -2+ 9,D.

Final state: any derivative containing ¢.

Roman Redziejowski w-automaton from derivatives

Does not work for w-regular language

X =(aUb)*(a¥ U (ab)“)

Roman Redziejowski w-automaton from derivatives

Does not work for w-regular language

X =(aUb)*(a¥ U (ab)“)

Roman Redziejowski w-automaton from derivatives

Does not work for w-regular language

X =(aUb)*(a¥ U (ab)“)

Too few transitions to

_» recognize X.

Roman Redziejowski w-automaton from derivatives

A bright idea

Distinguish derivatives that bite the omega part:

Insert "marker" t before the operand of each «.
Take derivatives with respect to a and fa.

Roman Redziejowski w-automaton from derivatives

A bright idea

Distinguish derivatives that bite the omega part:

Insert "marker" t before the operand of each «.
Take derivatives with respect to a and fa.

For example:
X = (aub)*(a U (ab)~)
X" = (aub)*((ta)~ U (tab)~)

Roman Redziejowski w-automaton from derivatives

A bright idea

Distinguish derivatives that bite the omega part:

Insert "marker" t before the operand of each «.
Take derivatives with respect to a and fa.

For example:
X = (aub)*(a U (ab)~)
X" = (aub)*((ta)~ U (tab)~)

8axl == X,
04X’ = (@) U b (tab)~

Roman Redziejowski w-automaton from derivatives

A bright idea

New derivative automaton:

States: nonempty derivatives of X’.

Initial state: 9.X’.

Transitions:
D % 8.D,
D a—/°> O0saD (enters w-iteration).

Accepting run: infinitely many transitions with e.

Roman Redziejowski w-automaton from derivatives

Derivative automaton

X" = (aub)*((fa)~ U (tab))

Roman Redziejowski w-automaton from derivatives

Derivative automaton

X" = (aub)*((fa)~ U (tab))

Dg = 0.X" = X/; 0aDo = 0pDg = Dy;
D1 = 93X’ = (fa)” U b (tab)*; 04aDo = Dy;
Dy = dyap X' = (fab)“; 0pD1 = 0pDyg = Dy;
D3 = OsaraX’ = (fa)*; 04aD1 = D3;
D4 = DyapsaX’ = b (tab)®. 9:aD; = Dy

Roman Redziejowski w-automaton from derivatives

Derivative automaton

X" = (aub)*((fa)~ U (tab))

Do:agxlle; 8aDo :8bD0 = Do;
D, = auaX/ = (fa)” U b (fab)“; aﬁaDo = Dq;
Dy = dyap X' = (fab)“; 0pDy = 0pD4 = Dy;
D3 = dpazaX’ = (ta)*; 04aD1 = Dg;
D4 = aﬁabuaxl =b (ﬁab)w. 8ﬁaD2 = D4.
aje
.
-

R
° /‘
=)0y C) = =0

Roman Redziejowski w-automaton from derivatives

Derivative automaton

aje

R
a
2 a/e ‘a/.b a/e
~®y) .

(on

Roman Redziejowski w-automaton from derivatives

Derivative automaton

aje

N
a,b

ﬂ aje ‘a/.b a/e
~ @y :

Has run with infinitely many e < inputis in (aUb)*(a“ U (ab)“).

Roman Redziejowski w-automaton from derivatives

Derivative automaton

aje

N
a,b

ﬁ ‘a/o /
° b a/e
~E)Y ;

Has run with infinitely many e < inputis in (aUb)*(a“ U (ab)“).

But, it is nondeterministic.

Roman Redziejowski w-automaton from derivatives

Derivative automaton

aje

N
a,b

ﬂ ‘a/o /
° b a/e
- ;

Has run with infinitely many e < inputis in (aUb)*(a“ U (ab)“).

But, it is nondeterministic.

There exist determinization methods.

Roman Redziejowski w-automaton from derivatives

Determinization

Different ways to obtain states of deterministic automaton.

Roman Redziejowski w-automaton from derivatives

Determinization

Different ways to obtain states of deterministic automaton.

Safra 1988 used trees built from the original states.

Roman Redziejowski w-automaton from derivatives

Determinization

Different ways to obtain states of deterministic automaton.
Safra 1988 used trees built from the original states.

RR 1999 used annotations to run tree.

Roman Redziejowski w-automaton from derivatives

Determinization

Different ways to obtain states of deterministic automaton.
Safra 1988 used trees built from the original states.
RR 1999 used annotations to run tree.

Piterman 2007 used a numbering trick to improve Safra’s trees.

Roman Redziejowski w-automaton from derivatives

Determinization

Different ways to obtain states of deterministic automaton.
Safra 1988 used trees built from the original states.

RR 1999 used annotations to run tree.

Piterman 2007 used a numbering trick to improve Safra’s trees.
We are going to improve RR 1999 by using

annotations to run DAG ! enhanced with Piterman'’s trick.

1Directed Acyclic Graph

Roman Redziejowski w-automaton from derivatives

All possible runs on given input.
a \ \

a \ \ \o Input is in X if and only if

the DAG contains a live path:
path with infinitely many e.

a \\

Roman Redziejowski w-automaton from derivatives

Annotating the run DAG
input {}
a [J

Brackets enclose descendants
{ {) + any node reached via e

a\\
a\\

C?C

a\\

Roman Redziejowski w-automaton from derivatives

Annotating the run DAG

Brackets enclose descendants

{} } + any node reached via e

Roman Redziejowski w-automaton from derivatives

Easier to do it on the side...

input{} {Do}

{©y) }} {Do{ D1 }}

Green event

Watch for this situation:

{Dil Din } level i

{{Djl H Dj, b Dip, 18 level |

Roman Redziejowski w-automaton from derivatives

Green event

Watch for this situation:

{Dil Din } level i

{{Djl H Dj, b Dip, 18 level |

All paths from level i to level j are marked with e .

Roman Redziejowski w-automaton from derivatives

Green event

Watch for this situation:

{Dil Din } level i

{{Djl H Dj, b Dip, 18 level |

All paths from level i to level j are marked with e .
We call this "green event" for the enclosing brackets, remove
inner brackets, and emit green light.

Roman Redziejowski w-automaton from derivatives

Green event

Watch for this situation:

{Dil Din } level i

{{Djl H Dj, b Dip, 18 level |

All paths from level i to level j are marked with e .
We call this "green event" for the enclosing brackets, remove
inner brackets, and emit green light.

i Dj2 Djm } =G

Repeated green events = live path exists.

Roman Redziejowski w-automaton from derivatives

Green event

input {
a
{

{

O} {Do}

e {Do{D1}}

{0 ((©91)) (Dofr}(Da}} =6
5 0 %

,\

It must be the same pair of brackets all the time!

input (Do) (Do}
a \
{Do{D1}}

[Do{D1}{Ds}} =G
2 [k

{Do{D;}{Ds}} =G

) \\

(Do{D:}(Ds}} -G

{Do{D2}}

Roman Redziejowski w-automaton from derivatives

~— ~— ~—
~ N ~ N ~—m
™ ™ <
o o o
—~— —— N —— N ~— — ™
~ ~—m ~—m ~—m ~<
— i i N |
()] o o o (a)
—~— -~ — ™ — ™ — ™ — <
o o o o o o
() () () () () ()
— — — — — —

\\\ \

@®© @®© @®© o @®©

Solution: numbering

C ®:

-
> .
o :
==

]
=
]
=
@
©
£
S
£
=
g
5]
=
]
=
ﬁ
B

Roman Redziejowski

input \ ‘EDOi
a [J

\\
a [J [J
(Dot
a \ \\.

jPoiPrliPe)] =62

a \\

(Pofo1) (0]} 02

=

Do{D1}}
2 21

W
N~

D3} } = G2
21

{Do{D2} } oops! 2 reused
1 2 21

Roman Redziejowski w-automaton from derivatives

input ‘EDoi
a \Q\
\\
a [] []
a \ \ \.

a \\

(Pofou) (0]} 02

{Do{D1}}
1 2 21

[t
O
o
w
O
iy
W~
N~
O
w
N —~
= —
0]
N

=
O
o
w
O
iy
W~
N~
v
w
N —~
= —
0]
N

=~
O
o
N~
O
N
N ——
> ——
\
Pu)
N

Roman Redziejowski w-automaton from derivatives

Acceptance condition

Live path exists - that is, input is in X - if and only if
= G 2 occurs infinitely often and
= R 2 occurs finitely often.

Roman Redziejowski w-automaton from derivatives

Acceptance condition

Live path exists - that is, input is in X - if and only if
= G 2 occurs infinitely often and
= R 2 occurs finitely often.

(But just wait, it will be more complicated.)

Roman Redziejowski w-automaton from derivatives

Meanwhile, note this:

No pictures needed!

We can produce annotations without ever constructing the
derivative automaton or drawing the DAG!

Roman Redziejowski w-automaton from derivatives

Meanwhile, note this:

No pictures needed!

We can produce annotations without ever constructing the
derivative automaton or drawing the DAG!

Start with {Dg } .
101

Roman Redziejowski w-automaton from derivatives

Meanwhile, note this:

No pictures needed!

We can produce annotations without ever constructing the
derivative automaton or drawing the DAG!

Start with {Dg } .
101

For input letter a, just replace every occurrence of D; by
8aDi{ 8(u a)Di },

then remove empty derivatives, remove empty brackets, add
numbers (indicating reuse), and handle green events.

Roman Redziejowski w-automaton from derivatives

(21])

\ \ becomes

Ss0alliiPel

Roman Redziejowski w-automaton from derivatives

(21])

\ ‘ becomes
{{Ds} } {{Ds}}
35 5326 62
What to do here? Have to delete one of D3’s.
Which one? We may miss live path.

Roman Redziejowski w-automaton from derivatives

(21])

\ ‘ becomes

Ss0alliiPel

What to do here? Have to delete one of D3’s.
Which one? We may miss live path.

Safra 1988 orders nodes by "age"
and retains the "oldest" predecessor.

Roman Redziejowski w-automaton from derivatives

(21])

\ ‘ becomes
{{Ds} } {{Ds}}
35 5326 62
What to do here? Have to delete one of D3’s.

Which one? We may miss live path.

Safra 1988 orders nodes by "age"
and retains the "oldest" predecessor.

RR 1999 uses left-to right ordering and retains the rightmost.

Roman Redziejowski w-automaton from derivatives

(21])

\ ‘ becomes
{{Ds} } {{Ds}}
35 5326 62
What to do here? Have to delete one of D3’s.

Which one? We may miss live path.

Safra 1988 orders nodes by "age"
and retains the "oldest" predecessor.

RR 1999 uses left-to right ordering and retains the rightmost.

Piterman 2007 exploits the numbering.
We are going to use his trick.

Roman Redziejowski w-automaton from derivatives

Numbering and renumbering

Part 1 of the trick is numbering and renumbering of brackets.

New brackets get a number higher than those present.
Removal of empty brackets may leave gaps in the numbering:

1246

We close the gaps by reducing numbers above the gap:

Number 4 is changed to 3
Number 6 is changed to 4

1246

L
1234

Roman Redziejowski w-automaton from derivatives

Removing duplicates

Part 2 of the trick is: from multiple occurrences of D;
retain one with the lowest nesting pattern.

{Do{D1} {{Ds} } {{Ds}}}
1 4 435 5326 621

Nesting patterns for Ds are (1-3-5) and (1-2-6).
The second is lexicografically lower.
We remove the first occurrence of Dj:

{Do{D1}{{}}{{Ds}}}
1 4 4355326 621

Roman Redziejowski w-automaton from derivatives

How to get the next annotation:

(A1) Replace each D; as described. Each time assign the
lowest unused number to new brackets.
(A2) Remove duplicates, leaving one with lowest nesting
pattern.
(A3) Remove all empty pairs of brackets.
Set r = the lowest number on removed pair
or n + 1 if none removed (n = number of derivatives).
(A4) Handle green events.
Set g = the lowest number on green pair or n 4+ 1 if none.
(A5) Renumber brackets to fill the gaps.
(A6) If g < r, append = G g on the right.
Ifr <gandr #n+1, append = Rr.

Roman Redziejowski w-automaton from derivatives

Example for input a

before:

replace Dj’s:

remove duplicates:
remove empty brackets:
handle green events:
renumber:

add output:

{Do{D1}{D3}}

1 3 32 21
{Do{D1} {{Ds} } {{Ds} }}
1 4 435 5326 621
{Do{D1}{{}}{{Ds}}}
1 4 4355326 621
{Do{D1} {{Ds3}}} r=3
1 4 426 621
{Do{D1}{D3}} g=2

1 4 42 21

{Do{D1} {Ds} }

1 3 32 21
{Do{D1}{D3}} =G2

1 3 32 21

Roman Redziejowski w-automaton from derivatives

Deterministic automaton

Only finitely many distinct annotations exist, so the following
automaton will be finite:

— States: Annotations reachable from the initial state by
transitions defined below.

— Initial state: {9.X’}.
1 1

— Transitions: For a state s and an input letter a € ¥, apply
(A1)—(A6) to s. The part of the result between, and
including, the brackets numbered 1 is the next state. The
output is to the right of = (if any).

— Acceptance condition: A word w € ¥ is accepted if and
only if exists g such that the automaton applied to w emits
Gg infinitely many times, and emits any Rr with r < g only
finitely many times.

Roman Redziejowski w-automaton from derivatives

A= {Do}

101
B={Do{D1}}

1 02 21
C={Do{D1}{D3}}

1 3 32 21
D= {Do{D2} }

1 2 21
E={Do{D1}{Das}}

1 3 32 21

2 C=G2
2A.Cc=G2
2L E=G2

2. C=R2

States & transitions for X = (aub)*(a* U (ab)~)

>

I Ir

L. p=R2
b
— A= R2

2. b=R3

Roman Redziejowski w-automaton from derivatives

Automaton for X = (auUb)*(a* U (ab)¥)

05—0
b/R3
Accepting run:

G2 infinitely often, R2 finitely often.
Don't care about R3.

Roman Redziejowski w-automaton from derivatives

A good question?

Using the method of Safra / Piterman one can estimate
the maximum number of possible states to n"(n — 1)!
where n = number of states of derivative automaton.
For n = 5 this gives 75000.

How come we got only 5 states?

Roman Redziejowski w-automaton from derivatives

That'’s all folks ...

Thanks for your attention!

Roman Redziejowski w-automaton from derivatives

