
Relations FIRST and FOLLOW
for Parsing Expression Grammar

Roman R. Redziejowski

CS&P 2010

Roman R. Redziejowski FIRST and FOLLOW for PEG



What is Parsing Expression Grammar?

The last fad in top-down parsing with limited backtracking.

1961 Brooker & Morris - Altas Compiler Compiler
1965 McClure - TransMoGrifier (TMG)
1972 Aho & Ullman - Top-Down Parsing Language (TDPL)
...
2004 Ford - Parsing Expression Grammar (PEG)

Roman R. Redziejowski FIRST and FOLLOW for PEG



Parsing Expression Grammar (PEG)

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

Not a grammar: a recursive-descent parser.

Named parsing procedures ("parsing expressions").

Call other procedures and "terminals".

Note: not LL(1).

Roman R. Redziejowski FIRST and FOLLOW for PEG



Parsing Expression Grammar (PEG)

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

Not a grammar: a recursive-descent parser.

Named parsing procedures ("parsing expressions").

Call other procedures and "terminals".

Note: not LL(1).

Roman R. Redziejowski FIRST and FOLLOW for PEG



Parsing Expression Grammar (PEG)

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

Not a grammar: a recursive-descent parser.

Named parsing procedures ("parsing expressions").

Call other procedures and "terminals".

Note: not LL(1).

Roman R. Redziejowski FIRST and FOLLOW for PEG



Parsing Expression Grammar (PEG)

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

Not a grammar: a recursive-descent parser.

Named parsing procedures ("parsing expressions").

Call other procedures and "terminals".

Note: not LL(1).

Roman R. Redziejowski FIRST and FOLLOW for PEG



Parsing Expression Grammar (PEG)

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

Not a grammar: a recursive-descent parser.

Named parsing procedures ("parsing expressions").

Call other procedures and "terminals".

Note: not LL(1).

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^ ^^ ^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^

^^ ^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^

^^ ^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^

^^ ^

number->real

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^

^^ ^

number->real->digits

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^

^^ ^

number->real->digits->[0-9][0-9]*

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

^ ^

number->real->digits->[0-9][0-9]*: consume "29"

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

^ ^

number->real->digits

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

^ ^

number->real

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

^ ^

number->real->"."

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^ ^

^

^

number->real->".": consumes "."

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^ ^

^

^

number->real

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^ ^

^

^

number->real->digits

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^ ^^

^

number->real->digits: consume "165"

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^ ^^

^

number->real

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^ ^^

^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^ ^^

^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^ ^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^

^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^

^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^

^

number->real

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^

^

number->real->digits

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711

^

^

number->real->digits: consume "4711"

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711

^

^

number->real

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711

^

^

number->real->"."

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711

^

^

number->real->".": returns failure

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^

^

number->real: backtracks

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^

^

number->real: returns failure

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^

^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^

^

number->integer

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711
^

^

number->integer->digits

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711

^

^

number->integer->digits: consume "4711"

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711

^

^

number->integer

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711

^

^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG in action: backtracking

number = real / integer
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

4711

^

^

number

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^ ^

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^

^

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^

^

number

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^

^

number->integer

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165
^

^

number->integer->digits

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

number->integer->digits: consume "29"

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

number->integer

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

number

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Backtracking is limited

number = integer / real
real = digits? "." digits
integer = digits
digits = [0-9][0-9]*

29.165

^

^

Once number succeeded, nothing can force it to try real.

integer hides part of the language of real.

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG is not EBNF

All of these fail on input aab:

("a"/"aa")"b" - "a" consumes a, "b" fails on ab

("aa"/"a")"ab"

("a"/"c"?)"aab"

Not easy to see what happens in a complex grammar.

Roman R. Redziejowski FIRST and FOLLOW for PEG



PEG is not EBNF

All of these fail on input aab:

("a"/"aa")"b" - "a" consumes a, "b" fails on ab

("aa"/"a")"ab"

("a"/"c"?)"aab"

Not easy to see what happens in a complex grammar.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Some fun

Guess what this is doing:

A = "a"A"a" / "aa"

aaaa consumes 4 of 4
aaaaa 2 of 5
aaaaaa 4 of 6
aaaaaaa 6 of 7
aaaaaaaa 8 of 8
aaaaaaaaa 2 of 9

Result depends on input far ahead.

Programmer’s paradise: write, try, debug, show your skill.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Some fun

Guess what this is doing:

A = "a"A"a" / "aa"

aaaa consumes 4 of 4

aaaaa 2 of 5
aaaaaa 4 of 6
aaaaaaa 6 of 7
aaaaaaaa 8 of 8
aaaaaaaaa 2 of 9

Result depends on input far ahead.

Programmer’s paradise: write, try, debug, show your skill.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Some fun

Guess what this is doing:

A = "a"A"a" / "aa"

aaaa consumes 4 of 4
aaaaa 2 of 5

aaaaaa 4 of 6
aaaaaaa 6 of 7
aaaaaaaa 8 of 8
aaaaaaaaa 2 of 9

Result depends on input far ahead.

Programmer’s paradise: write, try, debug, show your skill.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Some fun

Guess what this is doing:

A = "a"A"a" / "aa"

aaaa consumes 4 of 4
aaaaa 2 of 5
aaaaaa 4 of 6

aaaaaaa 6 of 7
aaaaaaaa 8 of 8
aaaaaaaaa 2 of 9

Result depends on input far ahead.

Programmer’s paradise: write, try, debug, show your skill.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Some fun

Guess what this is doing:

A = "a"A"a" / "aa"

aaaa consumes 4 of 4
aaaaa 2 of 5
aaaaaa 4 of 6
aaaaaaa 6 of 7

aaaaaaaa 8 of 8
aaaaaaaaa 2 of 9

Result depends on input far ahead.

Programmer’s paradise: write, try, debug, show your skill.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Some fun

Guess what this is doing:

A = "a"A"a" / "aa"

aaaa consumes 4 of 4
aaaaa 2 of 5
aaaaaa 4 of 6
aaaaaaa 6 of 7
aaaaaaaa 8 of 8

aaaaaaaaa 2 of 9

Result depends on input far ahead.

Programmer’s paradise: write, try, debug, show your skill.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Some fun

Guess what this is doing:

A = "a"A"a" / "aa"

aaaa consumes 4 of 4
aaaaa 2 of 5
aaaaaa 4 of 6
aaaaaaa 6 of 7
aaaaaaaa 8 of 8
aaaaaaaaa 2 of 9

Result depends on input far ahead.

Programmer’s paradise: write, try, debug, show your skill.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Some fun

Guess what this is doing:

A = "a"A"a" / "aa"

aaaa consumes 4 of 4
aaaaa 2 of 5
aaaaaa 4 of 6
aaaaaaa 6 of 7
aaaaaaaa 8 of 8
aaaaaaaaa 2 of 9

Result depends on input far ahead.

Programmer’s paradise: write, try, debug, show your skill.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Some fun

Guess what this is doing:

A = "a"A"a" / "aa"

aaaa consumes 4 of 4
aaaaa 2 of 5
aaaaaa 4 of 6
aaaaaaa 6 of 7
aaaaaaaa 8 of 8
aaaaaaaaa 2 of 9

Result depends on input far ahead.

Programmer’s paradise: write, try, debug, show your skill.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Problem

General problem:
understand what this damned thing is doing.

Very difficult. (CS&P 2007, Fundamenta Inf. 85).
Partial problem:
detect language hiding in a complex grammar.
Very difficult (Schmitz).
How about just some hints where to look?
Observation: problems are associated
with LL(1) violations.
Suggestion: detect LL(1) violations.
How: adapt known techniques to PEG.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Problem

General problem:
understand what this damned thing is doing.
Very difficult. (CS&P 2007, Fundamenta Inf. 85).

Partial problem:
detect language hiding in a complex grammar.
Very difficult (Schmitz).
How about just some hints where to look?
Observation: problems are associated
with LL(1) violations.
Suggestion: detect LL(1) violations.
How: adapt known techniques to PEG.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Problem

General problem:
understand what this damned thing is doing.
Very difficult. (CS&P 2007, Fundamenta Inf. 85).
Partial problem:
detect language hiding in a complex grammar.

Very difficult (Schmitz).
How about just some hints where to look?
Observation: problems are associated
with LL(1) violations.
Suggestion: detect LL(1) violations.
How: adapt known techniques to PEG.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Problem

General problem:
understand what this damned thing is doing.
Very difficult. (CS&P 2007, Fundamenta Inf. 85).
Partial problem:
detect language hiding in a complex grammar.
Very difficult (Schmitz).

How about just some hints where to look?
Observation: problems are associated
with LL(1) violations.
Suggestion: detect LL(1) violations.
How: adapt known techniques to PEG.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Problem

General problem:
understand what this damned thing is doing.
Very difficult. (CS&P 2007, Fundamenta Inf. 85).
Partial problem:
detect language hiding in a complex grammar.
Very difficult (Schmitz).
How about just some hints where to look?

Observation: problems are associated
with LL(1) violations.
Suggestion: detect LL(1) violations.
How: adapt known techniques to PEG.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Problem

General problem:
understand what this damned thing is doing.
Very difficult. (CS&P 2007, Fundamenta Inf. 85).
Partial problem:
detect language hiding in a complex grammar.
Very difficult (Schmitz).
How about just some hints where to look?
Observation: problems are associated
with LL(1) violations.

Suggestion: detect LL(1) violations.
How: adapt known techniques to PEG.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Problem

General problem:
understand what this damned thing is doing.
Very difficult. (CS&P 2007, Fundamenta Inf. 85).
Partial problem:
detect language hiding in a complex grammar.
Very difficult (Schmitz).
How about just some hints where to look?
Observation: problems are associated
with LL(1) violations.
Suggestion: detect LL(1) violations.

How: adapt known techniques to PEG.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Problem

General problem:
understand what this damned thing is doing.
Very difficult. (CS&P 2007, Fundamenta Inf. 85).
Partial problem:
detect language hiding in a complex grammar.
Very difficult (Schmitz).
How about just some hints where to look?
Observation: problems are associated
with LL(1) violations.
Suggestion: detect LL(1) violations.
How: adapt known techniques to PEG.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Classical FIRST and FOLLOW

A known technique to check for LL(1) uses these relations:

FIRST(s) - set of possible first letters in a string
derived from grammar symbol s.
FOLLOW(s) - set of possible letters that can follow a string
derived from grammar symbol s.

Roman R. Redziejowski FIRST and FOLLOW for PEG



FIRST and FOLLOW for PEG

Adapted to PEG:

FIRST(e) - set of terminals that may be invoked by
expression e on the start of input.
FOLLOWs(e) - set of expressions that may be invoked
after success of e.
FOLLOWf (e) - set of expressions that may be invoked
after failure of e.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Disjoint expressions

Disjoint expressions e1 and e2:
terminals from FIRST(e1) and FIRST(e2)
cannot succeed on the same input.

Example:

e1 = "abc"[a-z]∗ FIRST(e1) = {"abc"},
e2 = "abd"[a-z]∗ FIRST(e2) = {"abd"},
e3 = [a-z][a-z]∗ FIRST(e3) = {[a-z]}

e1 and e2 are disjoint.
e2 and e3 are not.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Disjoint expressions

Disjoint expressions e1 and e2:
terminals from FIRST(e1) and FIRST(e2)
cannot succeed on the same input.

Example:

e1 = "abc"[a-z]∗ FIRST(e1) = {"abc"},
e2 = "abd"[a-z]∗ FIRST(e2) = {"abd"},
e3 = [a-z][a-z]∗ FIRST(e3) = {[a-z]}

e1 and e2 are disjoint.
e2 and e3 are not.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Main result

Disjoint choice e1/ . . . /en: all e1, . . . ,en are pairwise disjoint.

1 Language hiding does not occur in a disjoint choice.

- We can flag non-disjoint choices for examination.

2 If any of e1, . . . ,en in a disjoint choice fails after succeeding
with at least one terminal, no terminal will succeed on that
input. (Until the parser backtracks and takes another try.)

- We can stop trying other alternatives.
This a PEG version of predictive parsing.
(Mizushima, Meada & Yamaguchi)

Roman R. Redziejowski FIRST and FOLLOW for PEG



Main result

Disjoint choice e1/ . . . /en: all e1, . . . ,en are pairwise disjoint.

1 Language hiding does not occur in a disjoint choice.

- We can flag non-disjoint choices for examination.

2 If any of e1, . . . ,en in a disjoint choice fails after succeeding
with at least one terminal, no terminal will succeed on that
input. (Until the parser backtracks and takes another try.)

- We can stop trying other alternatives.
This a PEG version of predictive parsing.
(Mizushima, Meada & Yamaguchi)

Roman R. Redziejowski FIRST and FOLLOW for PEG



Main result

Disjoint choice e1/ . . . /en: all e1, . . . ,en are pairwise disjoint.

1 Language hiding does not occur in a disjoint choice.

- We can flag non-disjoint choices for examination.

2 If any of e1, . . . ,en in a disjoint choice fails after succeeding
with at least one terminal, no terminal will succeed on that
input. (Until the parser backtracks and takes another try.)

- We can stop trying other alternatives.
This a PEG version of predictive parsing.
(Mizushima, Meada & Yamaguchi)

Roman R. Redziejowski FIRST and FOLLOW for PEG



Main result

Disjoint choice e1/ . . . /en: all e1, . . . ,en are pairwise disjoint.

1 Language hiding does not occur in a disjoint choice.

- We can flag non-disjoint choices for examination.

2 If any of e1, . . . ,en in a disjoint choice fails after succeeding
with at least one terminal, no terminal will succeed on that
input. (Until the parser backtracks and takes another try.)

- We can stop trying other alternatives.
This a PEG version of predictive parsing.
(Mizushima, Meada & Yamaguchi)

Roman R. Redziejowski FIRST and FOLLOW for PEG



There is more to it...

To handle special cases (e.g. expressions consuming
empty string), we need to involve FOLLOWs and FOLLOWf .

There is a similar theory for star expressions
that uses FOLLOWs.

But this is a long story...
See CS&P 2008, Fundamenta Inf. 93.

Roman R. Redziejowski FIRST and FOLLOW for PEG



There is more to it...

To handle special cases (e.g. expressions consuming
empty string), we need to involve FOLLOWs and FOLLOWf .

There is a similar theory for star expressions
that uses FOLLOWs.

But this is a long story...
See CS&P 2008, Fundamenta Inf. 93.

Roman R. Redziejowski FIRST and FOLLOW for PEG



There is more to it...

To handle special cases (e.g. expressions consuming
empty string), we need to involve FOLLOWs and FOLLOWf .

There is a similar theory for star expressions
that uses FOLLOWs.

But this is a long story...
See CS&P 2008, Fundamenta Inf. 93.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Everything fine?

⊕ Relations FIRST, FOLLOWs, FOLLOWf , and disjointness are
easy to compute using bit vectors and bit matrices.

⊕ Good news: experiment with a large grammar (Java 1.6)
found 264 of 329 choice and star expressions to be disjoint.

	 Bad news: most of the remaining 65 are false alarms.

Let us see why.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Everything fine?

⊕ Relations FIRST, FOLLOWs, FOLLOWf , and disjointness are
easy to compute using bit vectors and bit matrices.

⊕ Good news: experiment with a large grammar (Java 1.6)
found 264 of 329 choice and star expressions to be disjoint.

	 Bad news: most of the remaining 65 are false alarms.

Let us see why.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Everything fine?

⊕ Relations FIRST, FOLLOWs, FOLLOWf , and disjointness are
easy to compute using bit vectors and bit matrices.

⊕ Good news: experiment with a large grammar (Java 1.6)
found 264 of 329 choice and star expressions to be disjoint.

	 Bad news: most of the remaining 65 are false alarms.

Let us see why.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Everything fine?

⊕ Relations FIRST, FOLLOWs, FOLLOWf , and disjointness are
easy to compute using bit vectors and bit matrices.

⊕ Good news: experiment with a large grammar (Java 1.6)
found 264 of 329 choice and star expressions to be disjoint.

	 Bad news: most of the remaining 65 are false alarms.

Let us see why.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Trouble with lookahead

Lookahead expression: !e where e is any expression.

For example: !"abc".

It means:

- Call "abc".
- If it succeeds, backtrack and report failure.
- Otherwise report success.

In other words:

- Make sure the input does not start with abc.
- But do not consume anything.
- "abc" is included in FIRST.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Trouble with lookahead

Lookahead expression: !e where e is any expression.

For example: !"abc".

It means:

- Call "abc".
- If it succeeds, backtrack and report failure.
- Otherwise report success.

In other words:

- Make sure the input does not start with abc.
- But do not consume anything.
- "abc" is included in FIRST.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Trouble with lookahead

Lookahead expression: !e where e is any expression.

For example: !"abc".

It means:

- Call "abc".
- If it succeeds, backtrack and report failure.
- Otherwise report success.

In other words:

- Make sure the input does not start with abc.
- But do not consume anything.

- "abc" is included in FIRST.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Trouble with lookahead

Lookahead expression: !e where e is any expression.

For example: !"abc".

It means:

- Call "abc".
- If it succeeds, backtrack and report failure.
- Otherwise report success.

In other words:

- Make sure the input does not start with abc.
- But do not consume anything.
- "abc" is included in FIRST.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Trouble with lookahead

Consider

e1 = (!"abc")[a-z]∗,
e2 = "abc"[a-z]∗.

e1 consumes strings of letters that do not start with abc.
e2 consumes strings of letters that do start with abc.

They never succeed on the same input.

FIRST(e1) = {"abc",[a-z]} (yes, e1 tries both),
FIRST(e2) = {"abc"}.

They are flagged as non-disjoint.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Trouble with lookahead

Consider

e1 = (!"abc")[a-z]∗,
e2 = "abc"[a-z]∗.

e1 consumes strings of letters that do not start with abc.
e2 consumes strings of letters that do start with abc.

They never succeed on the same input.

FIRST(e1) = {"abc",[a-z]} (yes, e1 tries both),
FIRST(e2) = {"abc"}.

They are flagged as non-disjoint.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Trouble with lookahead

Consider

e1 = (!"abc")[a-z]∗,
e2 = "abc"[a-z]∗.

e1 consumes strings of letters that do not start with abc.
e2 consumes strings of letters that do start with abc.

They never succeed on the same input.

FIRST(e1) = {"abc",[a-z]} (yes, e1 tries both),
FIRST(e2) = {"abc"}.

They are flagged as non-disjoint.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Trouble with lookahead

Consider

e1 = (!"abc")[a-z]∗,
e2 = "abc"[a-z]∗.

e1 consumes strings of letters that do not start with abc.
e2 consumes strings of letters that do start with abc.

They never succeed on the same input.

FIRST(e1) = {"abc",[a-z]} (yes, e1 tries both),
FIRST(e2) = {"abc"}.

They are flagged as non-disjoint.

Roman R. Redziejowski FIRST and FOLLOW for PEG



What is wrong?

FIRST(e1) = {"abc",[a-z]} is clearly too big.

Only [a-z]is called to really bite off a piece of input,
while "abc" is trying to prevent this.

Leaving "abc" out does not help:
FIRST(e1) = {[a-z]} and FIRST(e2) = {"abc"}
are still not disjoint.

We need something like FIRST(e1) = {[a-z] but not "abc"}.
Unfortunately, this does not work in general.
We need something new.

Roman R. Redziejowski FIRST and FOLLOW for PEG



What is wrong?

FIRST(e1) = {"abc",[a-z]} is clearly too big.

Only [a-z]is called to really bite off a piece of input,
while "abc" is trying to prevent this.

Leaving "abc" out does not help:
FIRST(e1) = {[a-z]} and FIRST(e2) = {"abc"}
are still not disjoint.

We need something like FIRST(e1) = {[a-z] but not "abc"}.
Unfortunately, this does not work in general.
We need something new.

Roman R. Redziejowski FIRST and FOLLOW for PEG



What is wrong?

FIRST(e1) = {"abc",[a-z]} is clearly too big.

Only [a-z]is called to really bite off a piece of input,
while "abc" is trying to prevent this.

Leaving "abc" out does not help:
FIRST(e1) = {[a-z]} and FIRST(e2) = {"abc"}
are still not disjoint.

We need something like FIRST(e1) = {[a-z] but not "abc"}.
Unfortunately, this does not work in general.
We need something new.

Roman R. Redziejowski FIRST and FOLLOW for PEG



What is wrong?

FIRST(e1) = {"abc",[a-z]} is clearly too big.

Only [a-z]is called to really bite off a piece of input,
while "abc" is trying to prevent this.

Leaving "abc" out does not help:
FIRST(e1) = {[a-z]} and FIRST(e2) = {"abc"}
are still not disjoint.

We need something like FIRST(e1) = {[a-z] but not "abc"}.

Unfortunately, this does not work in general.
We need something new.

Roman R. Redziejowski FIRST and FOLLOW for PEG



What is wrong?

FIRST(e1) = {"abc",[a-z]} is clearly too big.

Only [a-z]is called to really bite off a piece of input,
while "abc" is trying to prevent this.

Leaving "abc" out does not help:
FIRST(e1) = {[a-z]} and FIRST(e2) = {"abc"}
are still not disjoint.

We need something like FIRST(e1) = {[a-z] but not "abc"}.
Unfortunately, this does not work in general.
We need something new.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Aggresive expressions

Define "e bites s" to mean "a terminal called by e,
otherwise than via a lookahead, consumes a prefix of s".

(In other words, e takes the first real step to consume s.)

Example:

[a-z]∗ bites any string in [a-z]Σ∗.

"abc"[a-z]∗ bites any string in "abc"Σ∗.

(!"abc")[a-z]∗ bites any string in "abc"Σ∗ ∩ [a-z]Σ∗.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Aggresive expressions

Define "e bites s" to mean "a terminal called by e,
otherwise than via a lookahead, consumes a prefix of s".

(In other words, e takes the first real step to consume s.)

Example:

[a-z]∗ bites any string in [a-z]Σ∗.

"abc"[a-z]∗ bites any string in "abc"Σ∗.

(!"abc")[a-z]∗ bites any string in "abc"Σ∗ ∩ [a-z]Σ∗.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Aggresive expressions

Define "e bites s" to mean "a terminal called by e,
otherwise than via a lookahead, consumes a prefix of s".

(In other words, e takes the first real step to consume s.)

Example:

[a-z]∗ bites any string in [a-z]Σ∗.

"abc"[a-z]∗ bites any string in "abc"Σ∗.

(!"abc")[a-z]∗ bites any string in "abc"Σ∗ ∩ [a-z]Σ∗.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Aggresive expressions

Define "e bites s" to mean "a terminal called by e,
otherwise than via a lookahead, consumes a prefix of s".

(In other words, e takes the first real step to consume s.)

Example:

[a-z]∗ bites any string in [a-z]Σ∗.

"abc"[a-z]∗ bites any string in "abc"Σ∗.

(!"abc")[a-z]∗ bites any string in "abc"Σ∗ ∩ [a-z]Σ∗.

Roman R. Redziejowski FIRST and FOLLOW for PEG



BITES instead of FIRST

Define BITES(e) as a set of strings that e may bite:

e bites s ⇒ s ∈ BITES(e).

Examples:

BITES([a-z]∗) = [a-z]Σ∗.

BITES("abc"[a-z]∗) = "abc"Σ∗.

BITES((!"abc")[a-z]∗) = "abc"Σ∗ ∩ [a-z]Σ∗.

Roman R. Redziejowski FIRST and FOLLOW for PEG



BITES instead of FIRST

Define BITES(e) as a set of strings that e may bite:

e bites s ⇒ s ∈ BITES(e).

Examples:

BITES([a-z]∗) = [a-z]Σ∗.

BITES("abc"[a-z]∗) = "abc"Σ∗.

BITES((!"abc")[a-z]∗) = "abc"Σ∗ ∩ [a-z]Σ∗.

Roman R. Redziejowski FIRST and FOLLOW for PEG



BITES instead of FIRST

Define BITES(e) as a set of strings that e may bite:

e bites s ⇒ s ∈ BITES(e).

Examples:

BITES([a-z]∗) = [a-z]Σ∗.

BITES("abc"[a-z]∗) = "abc"Σ∗.

BITES((!"abc")[a-z]∗) = "abc"Σ∗ ∩ [a-z]Σ∗.

Roman R. Redziejowski FIRST and FOLLOW for PEG



BITES instead of FIRST

Define BITES(e) as a set of strings that e may bite:

e bites s ⇒ s ∈ BITES(e).

Examples:

BITES([a-z]∗) = [a-z]Σ∗.

BITES("abc"[a-z]∗) = "abc"Σ∗.

BITES((!"abc")[a-z]∗) = "abc"Σ∗ ∩ [a-z]Σ∗.

Roman R. Redziejowski FIRST and FOLLOW for PEG



New disjointness

BITES(e1) ∩ BITES(e2) = ∅ means:

e1 and e2 cannot both bite the same string.

Redefine "e1 and e2 disjoint" to mean

BITES(e1) ∩ BITES(e2) = ∅.

"abc"[a-z]∗ and (!"abc")[a-z]∗ are now disjoint!

Roman R. Redziejowski FIRST and FOLLOW for PEG



New disjointness

BITES(e1) ∩ BITES(e2) = ∅ means:

e1 and e2 cannot both bite the same string.

Redefine "e1 and e2 disjoint" to mean

BITES(e1) ∩ BITES(e2) = ∅.

"abc"[a-z]∗ and (!"abc")[a-z]∗ are now disjoint!

Roman R. Redziejowski FIRST and FOLLOW for PEG



New disjointness

BITES(e1) ∩ BITES(e2) = ∅ means:

e1 and e2 cannot both bite the same string.

Redefine "e1 and e2 disjoint" to mean

BITES(e1) ∩ BITES(e2) = ∅.

"abc"[a-z]∗ and (!"abc")[a-z]∗ are now disjoint!

Roman R. Redziejowski FIRST and FOLLOW for PEG



Updated main results

Redefine "e1/ . . . /en disjoint" to mean

"e1, . . . ,en are pairwise disjoint in the new sense."

1 Language hiding does not occur in a disjoint choice.

2 If any of e1, . . . ,en in a disjoint choice fails after biting the
input, nothing will bite that input. (Until the parser
backtracks and takes another try.)

Roman R. Redziejowski FIRST and FOLLOW for PEG



Updated main results

Redefine "e1/ . . . /en disjoint" to mean

"e1, . . . ,en are pairwise disjoint in the new sense."

1 Language hiding does not occur in a disjoint choice.

2 If any of e1, . . . ,en in a disjoint choice fails after biting the
input, nothing will bite that input. (Until the parser
backtracks and takes another try.)

Roman R. Redziejowski FIRST and FOLLOW for PEG



Everything fine? Not really...

The lookahead is still a problem.

BITES((!e1)e2) = SUCC(e1) ∩ BITES(e2)

where SUCC(e1) should be the set of strings
on which e1 succeeds.

Finding SUCC(e) for arbitrary e is difficult.

It is about e succeeding on s, not just biting it.
And remember, it may depend on input far ahead.
(Back to square one?)

Roman R. Redziejowski FIRST and FOLLOW for PEG



Everything fine? Not really...

The lookahead is still a problem.

BITES((!e1)e2) = SUCC(e1) ∩ BITES(e2)

where SUCC(e1) should be the set of strings
on which e1 succeeds.

Finding SUCC(e) for arbitrary e is difficult.

It is about e succeeding on s, not just biting it.
And remember, it may depend on input far ahead.
(Back to square one?)

Roman R. Redziejowski FIRST and FOLLOW for PEG



SUCC sucks

It is possible to find SUCC(e) if e is an expression on terminals.

Which is useful in many cases.

Otherwise we can approximate SUCC "from below",

by S̃UCC(e) ⊆ SUCC(e).

(We have to preserve "e bites s ⇒ s ∈ BITES(s)".)

One such approximation is S̃UCC(e) = ∅

which gives BITES((!e1)e2) = BITES(e2), loosing all info on e1.

Not good, but I do not see any better yet.

Roman R. Redziejowski FIRST and FOLLOW for PEG



SUCC sucks

It is possible to find SUCC(e) if e is an expression on terminals.

Which is useful in many cases.

Otherwise we can approximate SUCC "from below",

by S̃UCC(e) ⊆ SUCC(e).

(We have to preserve "e bites s ⇒ s ∈ BITES(s)".)

One such approximation is S̃UCC(e) = ∅

which gives BITES((!e1)e2) = BITES(e2), loosing all info on e1.

Not good, but I do not see any better yet.

Roman R. Redziejowski FIRST and FOLLOW for PEG



SUCC sucks

It is possible to find SUCC(e) if e is an expression on terminals.

Which is useful in many cases.

Otherwise we can approximate SUCC "from below",

by S̃UCC(e) ⊆ SUCC(e).

(We have to preserve "e bites s ⇒ s ∈ BITES(s)".)

One such approximation is S̃UCC(e) = ∅

which gives BITES((!e1)e2) = BITES(e2), loosing all info on e1.

Not good, but I do not see any better yet.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Implementation sucks

Implementation is more complicated than with FIRST.

Instead of sets, we have regular expressions
with Boolean operations.

Of course, the emptiness problem for such expressions
is decidable, but standard procedures are cumbersome
with a large alphabet.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Implementation sucks

Implementation is more complicated than with FIRST.

Instead of sets, we have regular expressions
with Boolean operations.

Of course, the emptiness problem for such expressions
is decidable, but standard procedures are cumbersome
with a large alphabet.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Implementation sucks

Implementation is more complicated than with FIRST.

Instead of sets, we have regular expressions
with Boolean operations.

Of course, the emptiness problem for such expressions
is decidable, but standard procedures are cumbersome
with a large alphabet.

Roman R. Redziejowski FIRST and FOLLOW for PEG



Conclusions

1 BITES is better than FIRST, but still not perfect.

2 BITES is more difficult to implement,
but this is one-off, not run-time, analysis.

3 There is still much left to be detected.

Roman R. Redziejowski FIRST and FOLLOW for PEG



What next

1 Implement and see how it works?

2 Forget it?

3 More research? (Need something for CSP 2011...)

Roman R. Redziejowski FIRST and FOLLOW for PEG



That’s all folks ...

Thanks for your attention!

Roman R. Redziejowski FIRST and FOLLOW for PEG


