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Abstract

Parsing Expression Grammar (PEG) encodes a recursive-descent parser with limited backtracking. Its proper-
ties are useful in many applications, but it is not well understood as a language definition tool. In its appearance,
PEG is almost identical to a grammar in the Extended Backus-Naur Form (EBNF), and one may expect it to define
the same language. But, due to the limited backtracking, PEG may reject some strings defined by EBNF, which
gives an impression of PEG being unpredictable. We note that for some grammars, the limited backtracking is
”efficient”, in the sense that it exhausts all possibilities. A PEG with efficient backtracking should therefore be
easy to understand. There is no general algorithm to check if the grammar has efficient backtracking, but it can
be often checked by inspection. The paper outlines an interactive tool to facilitate such inspection.

1 Introduction

One of the most common ways to define the syntax of a formal language is the Extended Backus-Naur Form
(EBNF). It originated with the development of Algol in the 1960’s. Already at that time it was suggested to parse
the language so defined by a collection of procedures that mirror the EBNF rules and call each other recursively [5].
In this approach, known as top-down parsing by recursive descent, the syntax definition becomes identical with its
parser.

The problem arises when parsing procedure must choose the next procedure to call. For some grammars, this can
be done by looking at the next input symbol. Such grammars are said to have the LL(1) property. An alternative is
to proceed by trial and error: examine all alternatives one by one, backtracking in the input until a correct one is
found. This no longer depends on any property of the grammar, but an exhaustive search may result in exponential
time. A reasonable compromise is limited backtracking: once an alternative succeeded, never return to try another
one.

The problem with limited backtracking is that by not trying hard it may miss some inputs that it should accept.
A notorious example is the rule A = aAa | aa that defines the set of strings of a’s of even length. Implemented
with limited backtracking, this rule accepts only strings of length 2n.

Parsing Expression Grammars (PEGs) have been introduced by Ford in [4] as a new formalism for describing
syntax of programming languages. The formalism encodes a recursive-descent parser with limited backtracking.
With ”packrat” technology described in [2,3], this parser can work in a linear time. As reported in [8], it can work
in a nearly constant space.

PEG is useful because it avoids the LL(1) restriction and directly provides a parser that may integrate the func-
tions otherwise provided by a separate ”scanner”. But, it is not well understood as a language definition tool.

In its appearance, PEG is practically identical to EBNF, only extended with an additional parsing operation, the
”syntactic predicate”. One of the elements of PEG is the ”choice expression” e1| e2. To anybody familiar with
EBNF, it should define the union of languages defined by e1 and e2. But, due to the limited backtracking, the
PEG choice may exclude part, or all, of the language of e2. This exclusion is not always obvious, which gives an
impression of PEG being unpredictable.

We note that the exclusion does not occur if the choice expression is ”disjoint”. We may say that in this case
the limited backtracking is ”efficient”: it finds everything that would be found by full backtracking. A PEG with
efficient backtracking defines thus exactly what would be intuitively expected by anybody familiar with EBNF.
Which should make it easy to understand.

∗Final version appeared in Fundamenta Informaticae 157, 4 (2018) 463-475.
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It has been formally proved [6, 7, 10] that PEG without predicates is equivalent to EBNF if it has efficient
backtracking. As there is no way to include syntactic predicates in EBNF, the proof cannot be extended to PEG
with predicates, but we conjecture that even in this case, PEG with efficient backtracking is sufficiently close to
intuition.

Unfortunately, there is no general way to check disjointness of choice expressions. However, it can be often
verified by inspection. We outline an interactive tool, called PEG Explorer, to assist such inspection.

We start by recalling, in Section 2, the definition of PEG, EBNF, and their formal semantics. In Section 3, we
discuss conditions for efficient backtracking. Section 4 introduces PEG Explorer with the help of three examples.
Finally, Section 5 contains few comments. The proofs, and the rules for approximating ”tail” have been placed in
Appendix.

2 The grammar

We start with a simplified Parsing Expression Grammar G over alphabet Σ. The grammar is a set of rules of the
form A = e where A belongs to a set N of symbols distinct from the letters of Σ and e is an expression. Each
expression is one of these:

ε (”empty”), ! e (”predicate”),
a ∈ Σ (”terminal”), e1e2 (”sequence”),
A ∈ N (”nonterminal”), e1| e2 (”choice”),

where each of e1, e2, e is an expression. The set of all expressions is in the following denoted by E. There is
exactly one rule A = e for each A ∈ N . The expression e appearing in this rule is denoted by e(A). The predicate
operator binds stronger than sequence and sequence stronger than choice.

The expressions represent parsing procedures, and rules represent named parsing procedures. In general, parsing
procedure is applied to an input string from Σ∗ and tries to recognize an initial portion of that string. If it succeeds,
it returns ”success” and usually consumes the recognized portion. Otherwise, it returns ”failure” and does not
consume anything. The actions of different procedures are specified in Figure 1.

ε Indicate success without consuming any input.

a If the text ahead starts with a, consume a and return success.
Otherwise return failure.

A Call e(A) and return result.

! e Call e. Return failure if succeeded.
Otherwise return success without consuming any input.

e1 e2 Call e1. If it succeeded, call e2 and return success if e2 succeeded.
If e1 or e2 failed, backtrack: reset the input as it was before the
invocation of e1 and return failure.

e1| e2 Call e1. Return success if it succeeded. Otherwise call expression e2
and return success if e2 succeeded or failure if it failed.

Figure 1: Actions of expressions as parsing procedures

We note the limited backtracking: once e1 in e1| e2 succeeded, e2 will never be tried. The backtracking done by
the sequence expression may only roll back e1| e2 as a whole.

The actions of parsing procedures can be formally defined using ”natural semantics” introduced in [6, 7]. For
e ∈ E, we write [e] xy PEG y to mean that e applied to string xy consumes x, and [e] x PEG fail to mean that e fails
when applied to x. By definition, [e] xy PEG y, respectively [e] x PEG fail, holds if and only if it can be formally
proved using the inference rules shown in Figure 2.

The PEG parser may end up in an infinite recursion, the well-known nemesis of top-down parsers. Formally, it
means that there is no proof according to the rules of Figure 2. It has been demonstrated that if the grammar G is
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[e(A)] xy PEG Y

[A] xy PEG Y
(rule)

[ε] x PEG x
(empty)

[a] ax PEG x
(letter1)

b ̸= a

[b] ax PEG fail
(letter2)

[a] ε PEG fail
(letter3)

[e] xy PEG y

[! e] xy PEG fail
(not1)

[e] x PEG fail

[! e] x PEG x
(not2)

[e1] xyz
PEG yz [e2] yz

PEG Z

[e1e2] xyz
PEG Z

(seq1)
[e1] x

PEG fail

[e1e2] x
PEG fail

(seq2)

[e1] xy
PEG y

[e1| e2] xy PEG y
(choice1)

[e1] xy
PEG fail [e2] xy

PEG Y

[e1| e2] xy PEG Y
(choice2)

where Y denotes y or fail and Z denotes z or fail.

Figure 2: Formal semantics of PEG

free from left-recursion, then for every e ∈ E and x ∈ Σ∗ there exists a proof of [e] x PEG fail or [e] x PEG y for
some y ∈ Σ∗. This has been shown in [6, 7] by checking that PEG defined by natural semantics is equivalent to
that defined by Ford in [4] and using the result from there. An independent proof for grammar without predicates
is given in [10]. It is easily extended to grammar with predicates. We assume from now on that G is free from
left-recursion.

For e ∈ E, we denote by L(e) the set of words x ∈ Σ∗ such that [e] xy PEG y for some y ∈ Σ∗. This is the
language accepted by e. Note that, in general, x ∈ L(e) does not mean [e] xy PEG y for each y.

We define EBNF interpretation of G as the language LE(e) accepted by expression e ∈ E. It is defined recur-
sively as

LE(ε) = {ε}, LE(e1e2) = LE(e1)LE(e2), LE(A) = LE(e(A)),

LE(a) = {a}, LE(e1| e2) = LE(e1) ∪ LE(e2), LE(! e) = {ε}.

It can be described by natural semantics shown in Figure 3. One can verify that x ∈ LE(e) if and only if [e] xy BNF 
y, for any y. Defining LE(! e) = {ε} is not an attempt to introduce predicates in EBNF, but a useful approximation.
One can verify that it preserves the property demonstrated in [6, 7] for PEG without predicates:

[e] xy PEG y ⇒ [e] xy BNF y. (1)

[e(A)] xy BNF y

[A] xy BNF y
(rule.b)

[ε] x BNF x
(empty.b)

[a] ax BNF x
(letter.b)

[! e] x BNF x
(not.b)

[e1] xyz
BNF yz [e2] yz

BNF z

[e1e2] xyz
BNF z

(seq.b)

[e1] xy
BNF y

[e1| e2] xy BNF y
(choice1.b)

[e2] xy
BNF y

[e1| e2] xy BNF y
(choice2.b)

Figure 3: Formal semantics of BNF
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3 Disjoint choice and efficient backtracking

It is known that the meaning of a parsing expression often depends on the context. To begin with, we assume that
G does not use predicates, and take as context the proof of [C] w BNF z for some C ∈ E and w, z ∈ Σ∗. For e ∈ E,
we define TailC(e) to be the set of all strings y in partial results [e] xy BNF y appearing in the proof of [C] w BNF z
for any w, z ∈ Σ∗. We say the choice expression e = e1 | e2 is disjoint in the context of C if it satisfies:

L(e1)Σ∗ ∩ L(e2)TailC(e) = ∅. (2)

It states, in effect, that limited backtracking is efficient in the context of C: once e1 succeeded, trying e2 is
doomed to failure.

Proposition 1. Assume that G does not contain predicates. If each choice expression accessible from C
is disjoint in the context of C then L(C) = LE(C).
(Proof is found in the Appendix.)

Let some S ∈ N be defined as the starting symbol of G. The language L(S), respectively LE(S), is then the
language accepted by G under the PEG or EBNF interpretation. Together with (1), the Proposition says that these
two interpretations are identical if limited backtracking is efficient in the context of S. Which is not surprising
since the difference between EBNF and PEG is caused by limited backtracking not exploring some paths. (This is
just another way to state the result found in [10].)

As the EBNF interpretation of predicates is not defined, verifying L(S) = LE(S) does not make sense in the
presence of predicates. We conjecture that PEG with predicates is well-behaved (whatever that means) if it has
efficient backtracking in the context of the starting symbol S, and in the context of each e appearing in !e ∈ E.

Condition (2) may involve checking the disjointness of two context-free languages, for which no algorithm
exists. Thus, there is no general mechanical way to check it for a given grammar. But, in many practical cases one
can solve the problem by approximating the languages ”from above”.

It is shown in the Appendix how to obtain TC(e) such that TailC(e) ⊆ TC(e). This gives a condition stronger
than (2):

L(e1)Σ∗ ∩ L(e2) TC(e) = ∅. (3)

Let F1, F2 ⊆ Σ∗ be such that F1Σ
∗ ⊇ L(e1)Σ∗ and F2Σ

∗ ⊇ L(e2)T (e). Condition (3) is obviously satisfied if
F1Σ

∗ ∩ F2Σ
∗ = ∅.

The challenge is to choose F1 and F2. One possible choice is to use the sets of possible first letters of L(e1)
respectively L(e2)TC(e). The property of these sets being disjoint is the same as the LL(1) property. In the absence
of predicates, the sets of first letters can be computed by known procedures [1, 12]. Assuming that all predicates
succeed (that is, replacing them by ε) introduces an additional approximation ”from above” and makes the classical
procedures available also in the presence of predicates.

An expression can satisfy (3) even if it does not have the LL(1) property. This can be often verified by inspection.
In Section 4 we present an experimental tool to facilitate such inspection.

The full grammar

The grammar G considered up to now is a simplified version of full PEG. This latter allows expressions such as
e1| e2| . . . | en, e1e2 . . . en, e∗, e+, and e? . The expression E = e1| e2| . . . | en is a syntactic sugar for E = e1|E1,
E1 = e2|E2, . . . , En = en so (2) must hold for all of E,E1, . . . , En−1. One can verify that this is true if

L(ei)Σ∗ ∩ L(ej)TailC(E) = ∅ for 1 ≤ i < j < n. (4)

The expressions E = e∗, E = e+, and E = e? constitute syntactic sugar for, respectively E = eE/ε, E = eE/e,
and E = e/ε so (2) must hold for each of them. One can verify that this is true if

L(e)Σ∗ ∩ TailC(E) = ∅. (5)

The rules for computing TC(e) can be similarly extended to the full PEG.
The terminals in full PEG are not necessary single letters from Σ∗, and may be multi-letter quoted strings, or

sets of letters defined as [abc] or [a-z]. Instead of sets of ”first letters” used in the test for LL(1), one has to
compute sets of ”first terminals” and check their disjointness.
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4 PEG Explorer

The experience shows that (3) can often be verified by inspection. Giving up all hope for an automatic verification,
the author created an interactive tool, the PEG Explorer, to facilitate such inspection.

The Explorer takes a grammar, tests all choice expressions for disjointness of first terminals (referred to in the
following as ”LL(1) test”) and presents for inspection those that did not pass the test.

A detailed description of Explorer is found in [11]. The examples below should give some feeling of how it
works.

Example 1: Primitive calculator

The following grammar defines the syntax of a primitive calculator (”eot” stands for end of text).

Sum = Sign Number (AddOp Number)* eot

Number = Digits? "." Digits | Digits

Sign = "-"?

AddOp = [-+]

Digits = [0-9]+

When Explorer is applied to this grammar, it opens, after a couple of steps, a window showing this text:

Number: Digits? "." Digits <==> Digits Tail(Number)

[0-9] <==> [0-9]

Digits? "." Digits

====================

Digits Tail(Number)

It tells that choice between the two alternatives of Number did not pass the LL(1) test because both alternatives may
start with [0-9].
The lower part is an invitation to verify that the language defined by (Digits? "." Digits)Σ∗ has an empty inter-
section with that defined by Digits Tail(Number). In other words, that Digits? "." Digits cannot define a prefix
of any string in Digits Tail(Number).

By clicking on an expression, you replace it by its definition. A click on Digits? replaces it by Digits | ε so that
the expression above the line becomes

Digits "." Digits | "." Digits

which is presented like this:

Digits "." Digits

"." Digits

====================

Digits Tail(Number)

One can easily see that "." Digits cannot be a prefix of expression under the line, so it can be ignored. To facilitate
this, Explorer has a button ”Filter” that removes such alternatives. A click on that button has this result:

Digits "." Digits

====================

Digits Tail(Number)

With both expressions starting with Digits, we need now to check whether the remaining part of the first line can
be a prefix of the remaining part of the other. To facilitate this, Explorer has a button ”Strip” that removes identical
initial parts. Clicking on that button produces this:
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Digits -- "." Digits

====================

Digits -- Tail(Number)

We need to see now what is at the beginning of Tail(Number). A click on Tail(Number) replaces it by the
approximation obtained in the way described in the Appendix:

Digits -- "." Digits

====================

Digits -- (AddOp Number)* eot

We can see that (AddOp Number)* eot cannot start with ".", so it cannot have "." Digits as prefix. The exam-
ined choice expression turns out to be disjoint. As it was the only one to be checked, the grammar has efficient
backtracking.

Note that our grammar has the property that was called LL(2p) in [10]: the parser can choose its way by looking
at the input within the reach of two parsing procedures. To choose between the two alternatives of Number, it has
to first call Digits, and if this succeeds, either proceed or backtrack depending on the outcome of ".".

Example 2: Non-disjoint choice

The following grammar defines another calculator, with addition, multiplication, and parentheses. The multiplica-
tion operator may be omitted so one can write, for example 2(.3+4) instead of 2*(.3+4).

Start = Sum !_

Sum = Product ("+" Product)*

Product = Factor ("*"? Factor)*

Factor = Digits? "." Digits | Digits | "(" Sum ")"

Digits = [0-9]+ ;

The Explorer applied to this grammar finds two cases that did not pass the LL(1) test. It shows this for one of them:

Digits? "." Digits

====================

Digits Tail(Factor)

It is about the first choice in Factor, where both alternatives may start with [0-9]. After a couple of clicks we
arrive at this:

Digits -- "." Digits

====================

Digits -- Tail(Factor)

After some more clicks we have:

Digits -- "." Digits

====================

Digits -- Factor ("*"? Factor)* Tail(Product)

One could now click on Factor, but a look at the grammar shows that Factor may start with "." Digits. This
shows that the choice is not disjoint. With omitted *, two Factors may follow directly after each other, like
this: 1.23.4, which may mean either 1.2*3.4 or 1.23*.4. Our grammar is ambiguous: there are two EBNF
interpretations, and PEG will choose one of them, namely the second. We might accept this ambiguity if we find
that the PEGs choice coincides with human perception.
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Example 3: Grammar with predicates

This example illustrates treatment of predicates. The following is a fragment of larger grammar that uses identifiers,
with some of them being reserved as ”keywords”. Only two keywords, "interface" and "int" are shown. A
keyword is followed by !Letter to make sure that prefix of an identifier is not recognized as a keyword. The
definition of Identifier is preceded by !Keyword to ensure that keyword is not recognized as an identifier.

Statement = (Keyword Number | Identifier Number)

Keyword = ("interface" | "int") !Letter

Identifier = !Keyword Letter+

Letter = [a-z]

Number = [0-9]+

The Explorer applied to this grammar indicates that the choices in Statement and Keyword do not satisfy LL(1).
For the first it shows this:

Keyword Number

====================

Identifier Number Tail(Statement)

Clicking on Identifier results in replacing it by its definition:

Keyword Number

====================

!Keyword Letter+ Number Tail(Statement)

It is now clear why this choice did not pass the LL(1) test: !Keyword may define empty string, so both alternatives
may start with Letter.
But one can easily see that no string beginning with Keyword can be a prefix of any string defined by !Keyword Letter+.
Which shows that this is a false alarm and the choice in Statement is disjoint.

For the choice in Keyword, Explorer shows this:

"interface"

====================

"int" Tail(Keyword.1)

The terminals "interface" and "int" are not disjoint, so Explorer signals this as LL(1) violation. (Keyword.1 is
the first subexpression of Keyword.) A click on Tail(Keyword.1) has this result:

"interface"

====================

"int" !Letter Tail(Keyword)

One can see that "interface" cannot be a prefix of anything starting with "int" !Letter, so this is again a false
alarm and the choice in Keyword is disjoint.

5 Final remarks

We noted that the condition for equivalence of EBNF and PEG without predicates found in [7] and generalized
in [10] can be viewed as a requirement that the limited backtracking of PEG is ”efficient”. Using a new definition
of ”tail”, we extended this condition to PEG with predicates, and believe that PEG with efficient backtracking is
easier to understand.

A general procedure for checking the condition is not possible, but it can often be checked by inspection. We
presented an interactive tool that facilitates such inspection.
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The inspection may result in additional insights into the working of PEG parser. In Example 1 we find that PEG
parser can choose its way by examining the input within the reach of two parsing procedures. In Example 2 we
find that backtracking is not efficient because it omits one of the alternatives permitted by an ambiguous EBNF
grammar. The inspection helps to understand which alternative is chosen by the PEG parser.

Example 3 shows that presence of predicates produces false alarms that have to be resolved by inspection. In
languages using reserved words, like Java, such false alarms constitute a large percentage of cases presented for
inspection.

Predicates are mainly used to define low-level structures that otherwise need a separate ”scanner”. The question
is if they can be replaced in this role by new operators that would simplify mechanical analysis. For example,
the use of predicates to define keywords could be replaced by an operator inspired by Boolean grammars of
Okhotin [9]. New expressions such as e1:& e2 and e1:! e2 could mean: apply e1 and then check if the consumed
text conforms, respectively does not conform to e2.

Another frequent use of predicates is the construction (!e1e2)
∗e1 that could be replaced by an ”until” operator.

It is a subject of further research and experiments to identify such operators, embed them in PEG, possibly in
EBNF, define formally, and handle in testing of (3).

A Appendix

A.1 Proof of Proposition 1

Assume G satisfies the stated conditions. Take any u, v ∈ Σ∗ such that [C] u PEG v. By (1), we have [C] u BNF v.
We are going to show that for each result [e] xy BNF y in the proof tree of [C] u BNF v, including the final result,
there exists a proof of [e] xy PEG y. We use induction on the height of the proof tree.
(Induction base) Suppose the proof of [e] xy BNF y has height 1. Then it has to be the proof of [ε] x BNF x or
[a] ax BNF x using empty.b or letter.b, respectively. But then, [ε] x PEG x respectively [a] ax PEG x by empty or
letter1.
(Induction step) Assume that for every result [e] xy BNF y that has proof tree of height n ≥ 1 there exists a proof of
[e] xy PEG y. Consider a result [e] xy BNF y with proof tree of height n+ 1. It must be one of these:

– [A] xy BNF y derived from [e(A)] xy BNF y, using rule.b. By induction hypothesis, [e(A)] xy PEG y, so
[A] xy PEG y follows from rule.

– [e1e2] xyz BNF z derived from [e1] xyz BNF yz and [e2] yz BNF z using seq.b. By induction hypothesis,
[e1] xyz

PEG yz and [e2] yz
PEG z, so [e1e2] xyz

PEG z follows from seq1.
– [e1| e2] xy BNF y derived from[e1] xy BNF y using choice1.b. By induction hypothesis, [e1] xy PEG y, so

[e1| e2] xy PEG y follows from choice1.
– [e1| e2] xy BNF y derived from [e2] xy

BNF y using choice2.b. By induction hypothesis, [e2] xy
PEG y. But, to

use choice2, we need to verify that [e1] xy
PEG fail.

Suppose there is no proof of [e1] xy
PEG fail. As G is not left-recursive, there exists a proof of [e1] wz

PEG z
where wz = xy. By definition, w ∈ L(e1) and x ∈ L(e2). As [e] xy BNF y appears in the proof of [C] u BNF v,
we have y ∈ TailC(e). From this follows L(e1)Σ∗∩L(e2)TailC(e) ̸= ∅, which contradicts (2). We must thus
conclude that there exists a proof of [e1] xy

PEG fail, so there exists a proof of [e1| e2] xy PEG y using choice2.

A.2 Approximating Tail

For a pair of expressions (e,E) such that [E] x′ BNF y′ can be derived from [e] x BNF y,
define T (e,E) = LE(e2) if E = e1 e2, or T (e,E) = {ε} otherwise.

Lemma 1. If [E] x′ BNF y′ can be derived from [e] x BNF y then y ⊆ T (e,E) y′.

Proof. In all cases except one using seq.b, [E] xy BNF y is derived from [e] xy BNF y, so y = {ε} y′ and
ε = T (e,E).
In case of seq.b, [E] stu BNF u is derived from [e1] stu

BNF tu and [e2] tu
BNF u. Case e = e2 is the same as

before. In case e = e1 we have y′ = u, y = tu, and t ∈ T (e2) = LE(e,E). That means y ∈ T (e,E)y′.
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Define:
– TC(C) = Σ∗.
– For e ̸= C: TC(e) = T (e,E1)TC(E1) ∪ · · · ∪ T (e,En)TC(En) where E1, . . . , En are all expressions

accessible from C that contain e.

Proposition 2. TailC(e) ⊆ TC(e).

Proof. Consider any y ∈ TailC(e). By definition, exists [e] x BNF y that appears in a proof of [C] w BNF z.
It is first in the chain of n results [Ei] xi

BNF yi where E1 = C and En = e. We show that yi ∈ TC(Ei).
[E1] x1

BNF y1 is the same as [C] w BNF z. We have y1 ∈ TC(C) = Σ∗.
Suppose we found that yi ∈ TC(Ei) for some i ≥ 1 < n. The result [Ei] xi

BNF yi is derived from
[Ei+1] xi+1

BNF yi+1. By Lemma 1, yi+1 ∈ T (ei+1, Ei) yi so yi+1 ∈ T (ei+1, Ei)TC(Ei). As Ei is clearly
accessible from C, T (ei+1, Ei)TC(Ei) ⊆ TC(Ei+1), so yi+1 ∈ TC(Ei+1).
By induction, yn ∈ TC(en), that is, y ∈ TC(e).
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