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Abstract

Parsing Expression Grammar (PEG) encodes a recursive-descent parser with limited backtracking. The parser
has many useful properties. Converting PEG to an executable parser is a rather straightforward task. Unfortu-
nately, PEG is not well understood as a language definition tool. It is thus of a practical interest to construct PEGs
for languages specified in some familiar way, such as Backus-Naur Form (BNF). The problem was attacked by
Medeiros in an elegant way by noticing that both PEG and BNF can be formally defined in a very similar way.
Some of his results were extended in a previous paper by this author. We continue here with further extensions.

1 Introduction

Parsing Expression Grammar (PEG), as introduced by Ford in [4], encodes a recursive-descent parser with limited
backtracking. Using the “memoization” or “packrat” technology described in [2, 3], the parser can work in linear
time. It does not require a separate “’lexer” to preprocess the input, and the limited backtracking lifts the LL(1)
restriction usually imposed by top-down parsers. These properties are useful in many applications.

Converting PEG to an executable parser is a rather straightforward task, and several parser generators are avail-
able to perform it. The Wikipedia entry on comparison of parser generators contains a long list. However, PEG
is not well understood as a language specification tool. It is thus of a practical interest to construct PEGs for
languages specified in some familiar way, such as Backus-Naur Form (BNF). This was successfully attempted
by Medeiros in his Ph.D. thesis [6]. The thesis is in Portuguese; an extended English version is now available on
Computing Research Repository [5]. The PEG and BNF are very similar in appearance, but their formal definitions
are worlds apart. The strategy invented by Medeiros was to replace these definitions by “natural semantics”. The
natural semantics of PEG and BNF are very close to each other, which can be efficiently used to study relationships
between the two kinds of grammar.

One of the results obtained using this method was that a BNF grammar with LL(1) property is converted by only
minor typographical changes into a PEG defining the same language. One can say that such grammar is its own
PEG parser. This turns out to be true for a much larger class of grammars. In a previous paper [7], we formulated
a sufficient condition for a grammar to be its own PEG parser. There is no general method to check this condition,
as it involves deciding emptiness of an intersection of context-free languages. There are, however, special cases
that are easy to check for. One of them is just the LL(1) property.

In [7], we suggested a method of checking the condition by approximations. It applies to a class of grammars
that we called LL(1P). It means that a PEG parser can choose its way by looking at the input within the reach of
one parsing procedure, instead of just one letter as in the case of LL(1). We present here the method in a slightly
different form, and indicate how it could be extended to LL(kP) grammars that allow the parser to look ahead
within the reach of k procedures.

The feature of a PEG parser that gives it the ability to look far ahead is backtracking. Because the backtracking
is limited, some simple grammars cannot act as their own PEG parsers. In [5, 6], one shows how to construct PEG
parsers for such grammars using the PEG’s and-predicate” to look as far ahead as needed. The constructions
presented there apply to strong LL(k) and LL-regular grammars. We note that the method can be applied to a
wider class of grammars and present conditions to be satisfied by the predicate, but give no general method to
construct it.

All proofs are collected in the Appendix.

*Final version appeared in Fundamenta Informaticae 133, 2-3 (2014) 257-270.



2 Some Notation

We consider a finite alphabet X of letters. A finite string of letters is a word. The string of O letters is called the
empty word and is denoted by €. The set of all words is X*. A subset of X* is a language.

As usual, we write XY to mean the concatenation of languages X and Y, that is, the set of all words xy where
reXandyeY.

A relation R on E is a subset of E x E. As usual, we write R(e) to mean the set of all e’ such that (e,e’) € R,
and R(E) to mean the union of R(e) for all e € E C E. The transitive closure of R is denoted by R™, and the
product of relations R and S by R x S.

3 The Grammar

We consider a grammar G over the alphabet 3 that will be interpreted as either PEG or BNF. The grammar consists
of a finite nonempty set N of symbols distinct from the letters of 3, and a set of equations, one for each symbol of
N. The equation for A € N has one of these two forms:

— A = ejes ("sequence”),
— A = e1] e ("choice™),

where each of eq, e; is an expression: an element of N, a letter from 3, or the symbol . The set N UX U {e} of
all expressions is in the following denoted by E.

When the grammar G is interpreted as BNF, the equation A = e represents a definition sometimes written as
A = e, and e;| ey is the unordered choice. When it is interpreted as PEG, the equation represents a definition of
parsing expression, written as A < e in [4], and e | e is the ordered choice. In each case, the elements of ¥ are
the “terminals” of the grammar, and the elements of N are the “nonterminals”.

The grammar has been reduced to bare bones in order to simplify the analysis. Any BNF grammar and PEG
without predicates can be reduced to this form by removing syntactic sugar and introducing new nonterminals.

3.1 The BNF Interpretation

The grammar G interpreted as BNF is a mechanism for generating words:

— € generates €.

— a € X generates itself.

— A = ejeq generates any word generated by e; followed by any word generated by es.

— A = eq] ey generates any word generated by e; or es.

The language L(e) of e € E is the set of all words that can be generated by e.

Following [5,6], we formally define the BNF interpretation by means of a relation *5C (IE x ¥*) x ¥*. We write
[e] z ®¥ y to mean that the relation holds for e € E and z,y € X*. The relation is defined by a set of inference
rules shown in Figure 1: it holds if and only if it can be proved using these rules.

(The notation ”A = ¢” in this and the next Figure means “the equation for A is A = €”.)
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Figure 1: BNF semantics



One can verify by structural induction that for any y € 3, we have [e] zy ~ y if and only if z € L(e). This
gives L(e) = {x € I* : [e] 2™ €}.
As it will be seen later on, some results depend on whether € € L(e) for given e € E. This can be decided using

a simple iterative algorithm, independent of the above formal definition.

3.2 The PEG Interpretation

When the grammar G is interpreted as PEG, the expressions represent parsing procedures that can call each other
recursively. In general, parsing procedure is applied to a word from X* and tries to recognize an initial portion of
that word. If it succeeds, it "consumes” the recognized portion and returns ”success’; otherwise, it returns “failure”
and does not consume anything. The action of different procedures is as follows:

— e: Indicate success without consuming any input.
a € X: If the text ahead starts with a, consume it and return success. Otherwise return failure.
— A = ej eq: Call e;. If it succeeded, call e5 and return success if eo succeeded.

If e; or es failed, backtrack: reset the input as it was before the invocation of e; and return failure.
— A = eq] eq: Call e;1. Return success if it succeeded.

Otherwise call expression e and return success if es succeeded or failure if it failed.

Note that backtracking is limited to the sequence expression. Once e; in e1] e succeeded, a subsequent failure
will not cause backtracking to try es.

We formally define the PEG interpretation by means of a relation “C (E x ¥*) x {¥* U fail}. We write
[e] w %% X to mean that the relation holds for e € E, w € ¥*, and X € {3* U fail}. The relation is defined by a
set of inference rules shown in Figure 2: it holds if and only if it can be proved using these rules.
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where Y denotes y or fail and Z denotes z or fail.
Figure 2: PEG semantics

One can easily see that [e] zy =5 y if and only if parsing expression e applied to zy consumes x, and [e] 2 *% fail
if and only if e fails when applied to x. For example, seq.pl with Z = fail represents backtracking in e; e5, and
choice.p2 represents e; | e calling e, after e; failed.

4 Previous results

Because of the ability of PEG to look ahead, we have to compare the two interpretations of the grammar when
applied to complete input strings. For this reason, we postulate that the grammar contains a unique equation
S = e$ where S € N is a distinguished start symbol, e is a member of E, and $ € X is a distinguished letter, the
end-of-text marker. Both S and $ appear only in this equation. We shall consider the two interpretations equivalent
if for each proof of [S] w *% ¢ exists a proof of [S] w *% ¢ and vice-versa.

For A € N where A # S, we define Tail(A) to be the set of such y € X* that [A] xy *% y appears as partial
result in the proof of [S] w ®% ¢ for some w € X*. One can verify by induction on structure of the proof tree that
each such partial result must have the form [A] z2$ ® 2$. In other words, Tail(A) is the set of terminated input
strings that may follow a substring from £(A) in a word belonging to £(.5).



We borrow from [1, 8] the definitions of Follow and First.
For e € E, define Last(e) to be the set of all A € N such that:

— A = e|e; for some e; € E, or

— A = eq|eforsomee; € E, or

— A=c¢jeforsomee; € E, or

— A =ce; forsome e; € E where e € L(ey).
For e € E, define Next(e) = {e; € E : exists A € Nsuchthat A = ee;}.
This defines relations Last and Next on E. Let Follow = Last™ X Next.
For e € E, define first(e) as follows:

- first(e) = @.

— Fora € X, first(a) = @.

— For A = ejeq, first(A) = {e1} if e ¢ L(e1).

— For A = ejeq, first(A) = {e1} U{ea} if €€ L(e1).

— For A = eq|eq, first(A) = {e1,ea}.
In terms of PEG interpretation, first(e) is the set of parsing procedures that may be called by e at the start of its
input string. Treating first as a relation on E, define First = first™. Then First(e) is the set of procedures
that may be called directly or indirectly by e to process at the start of its input. The grammar G is left-recursive
if e € First(e) for some e € E. If the grammar is left-recursive, its PEG parser may be involved in an infinite
descent, meaning that a proof of *3 may not exist. On the other hand:

Proposition 4.1. If the grammar G is not left-recursive then for every e € E and w € ¥* there exists a
proof of either [e] w "5 fail or [e] w 5 y where w = xy.

This is proved in [5, 6] by first verifying that the natural semantics given there is equivalent to the formal
definition from [4], and then using a result from the same paper that grammar without left-recursion is "complete”.
In the Appendix, we give an independent proof that makes our presentation self-contained.

The following appears as Lemma 4.3.1 in [6] and Lemma 2.3 in [5]:
Proposition 4.2. For any e € E and x,y € ¥*, [e] zy 5 y implies [e] zy *¥ y.

As a special case, [S] w %5 ¢ implies [S] w * .
The following appears, in a slightly different form, as Proposition 4.3 in [7]:

Proposition 4.3. If the grammar G is not left-recursive and its every equation A = e1|eq satisfies

L(e1)2* N L{ez) Tail(A) = 2, (1)

then [S] w %% ¢ implies [S] w "5 .

5 Checking the condition

Propositions 4.2 and 4.3 establish (1) as a sufficient condition for the grammar G to be its own PEG parser. The
problem with (1) is that we have there an intersection of context-free languages whose emptiness is, in general,
undecidable. The approach proposed in [7] is to approximate the involved languages by languages of the form
X3*. We present this approach in a slightly different form.

Let £ = 2% Fora set X C & of expressions, we define the language £(X) as the union J, .y €.
For X C £ and L C X* we write L C X to mean that L — ¢ C (£(X) — ¢)X*.
For X, Y C &, we write X< Y to mean that (£(X) —&)X* N (L(Y) — e)¥* = @.
We read L C X as "L is approximated by X” and X< Y as "X and Y are prefix-disjoint”.

Proposition 5.1. The condition (1) for A = e1|ea is satisfied if ¢ ¢ L(e1) and there exist X,Y C & such
that

L(e1) C X, (2)
L(es) Tail(A) C Y, (3)
X=<Y. (4)



Checking (1) is thus reduced to finding approximations X, Y that satisfy (2)—(4). We shall need some auxiliary
results to help in the search. The following properties where L1, Lo € 3¥* and L; C X, Ly C Y are easy to verify:

LiUL, CEXUY, (5)
ife ¢ L1 then L1L2 E X, (6)
ife € Ly then L1 Ly T XUY. (7)

We also need these:
Lemma 5.2. LC AUX = LC first(A)UX for LCY* A€ N, and XCE.
Lemma 5.3. Tail(A) C Follow(A) for each A€ N.

The method suggested in [7] consists of starting with X = e; and Y = e or Y = es U Follow(A), depending
on whether or not € € L(e3). They obviously satisfy (2) and (3). If they do not satisfy (4), we keep refining them
using Lemma 5.2 until we (hopefully) find sets that do. This can be illustrated on the following grammar:

S=X$ X =A|B
A=CY C=a"ct (8)
B=DZ D=atd"

where £(Y') and £(Z) are difficult to compare. (In order to save space, we do not show C' and D in our simplified
form.) To check (1) for X = A|B, we start with X = {A} and Y = {B}. As {A} < {B} is not easy (or
possible) to check, we use Lemma 5.2 to replace A by first(A) = {C} and B by first(B) = {D}. We have
(atech)E* N (atdT)X* = @, so {C} =< {D}, showing that X satisfies (1).

In general, the refining consists of repeatedly replacing any A € N appearing in X and / or Y by first(A).
When there is nothing more to replace, we are left with the sets of first letters” used in checking the LL(1)
condition. For such sets, (4) means X NY = &, which confirms the result about LL(1) grammars from [5,6]. Note
that (8) above is not LL(1), and not even LL(k) for any k.

The set X in (2) obtained after the refinement is a subset of First(e;). When the grammar G is interpreted
as PEG parser, X is thus a set of parsing procedures that the procedure e; in A = e;1| ey may call, directly or
indirectly, at the start of its input. When one of these procedures succeeds, X < Y ensures that es cannot succeed
on the same input. When all fail, (2) ensures that e; cannot succeed. The parser backtracks to try es. The parser can
thus choose between e; and ey by examining the input within the reach of one parsing procedure from First(eq).
Such grammars were in [7] referred to as LL(1P).

As an example, (8) interpreted as PEG parser can choose between A and B by looking at the input within the
reach of one parsing procedure, C'

While all possible refinements X and Y satisfying (2) and (3) can be generated by a mechanical procedure, there
is, in general, no such procedure to check them for (4), as we have there, in general, an intersection of context-free
languages. Still, many simple cases can be automatically detected and handled.

6 Beyond LL(1P)

Suppose that grammar (8) is modified as follows:
S=X$ X = A|B
A=FEF F=CY C=ct E=a" (9)
B =EG G=DZ D=d"

Here we have first(A) = first(B), so no amount of refinement using Lemma 5.2 can produce X =< Y.

However, we note that £L(A) C L(EC)X*, L(B) C L(EG)X*, and L(EC)Y*NL(ED)Y* = @.
With Tail(B) = $, the condition (1) is approximated as follows:

LA NL(B)S C L(EC)S*S* N L(ED)S'$ C L(BEC)S* N L(ED)S" = 2,

showing that the grammar (9) is its own PEG parser. This parser chooses between A and B by looking at the input
within the reach of two parsing procedures, E and C'. We can call such grammar LL(2P).



Let £2 = {e1e2 : e1 € E,ea € E}. The definitions of £(X) and L T X apply unchanged to X C £ U £2,
and conditions (2)—(4) still imply (1). Using this notation, we can state our observations above as L(A) C EC,
L(B)C ED, and {EC}=< {ED}.

The question is how do we systematically find the sets X, Y C & U £? that satisfy (2)—(4). The calculation
rules (5)—(7) remain valid, but Lemmas 5.3 and 5.2 apply to subsets of £. We need an algorithm to calculate
Followy C &2 such that Tail(A) C Followz(A) and one for refining the elements of £2. This is a subject of
further research. An extension to LL(kP) seems natural.

7 Looking Farther Ahead

The property of PEG parser that enables it to look far ahead is backtracking. But the limited backtracking of
PEG cannot be used to look ahead beyond e; in e;|ep. This is illustrated by the following grammar, borrowed
from [5,6]:

S=X$
X=AB A=ablC (10)
B=a|lCd C=c

Interpreted as BNF, this grammar defines £(.S) = {ab$, ¢$, a$, cd$}. But interpreted as a PEG parser, it does not
accept cd$: A succeeds on ¢ via C, X returns this success to .S, which fails when it finds d instead of $. Once
A succeeded, there is no backtracking to try B; X cannot look beyond A when faced with ¢ as the first letter.
However, the grammar is LL(2): a top-down parser can choose between A and B by looking at two letters ahead:
they are ab or ¢$ for A and a$ or ¢d for B.

The full PEG, as defined in [4], has an operation to look ahead as far as needed. It is the "and-predicate” &e
that means: “’invoke the expression e on the text ahead and backtrack; return success if e succeeded or failure if it
failed”. It can be inserted into (10) to look beyond A:

S=X$
X =A&S$B  A=ab|C (11)
B =a|Cd C=c

As the result, after A succeeding on the first c of cd$, &$ fails on the following d, so A&$ fails and B is successfully
tried.

This scheme is applied in [5, 6] to construct PEG parsers for strong LL(k) and LL-regular grammars. To study
if it can be used for other classes of grammars, we replace each expression A = e1] ey in the grammar G that
cannot be verified to satisfy (1) with A = e;&eg| e, where ey € E. We call the resulting grammar G’, and define
semantics of the new expressions by the additional inference rules shown in Figure 3. From now on, the relation

PEG BNF

~< applies to G’, while == still applies to G.

(choice.p3)

(choice.p4)

2 leo) 2 W fail eq] wy Y
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where Y denotes y or fail.
Figure 3: Extended PEG semantics

The problem is to choose the expression eg. The obvious requirement is that the grammar G’ should not be
left-recursive. To specify this formally, we add one more rule to the definition of first:

— For A € N where A = e;&eg|ea, first(A) = {eg,e1,e2}.



The grammar G’ is not left-recursive if e ¢ first™(e) for all e € E holds with first so adjusted. We need to
make sure that Propositions 4.1 and 4.2 hold for the modified grammar.

Proposition 7.1. If the grammar G’ is not left-recursive then for every e € B and w € ¥* there ewists
a proof of either [e] w "% fail or [e] w ¥ y where w = zy.

Proposition 7.2. For any e € E and x,y € 3%, [e] zy *¥ y implies [e] vy ¥ y, where %X applies to G
and “% to G'.

We can now state the requirements for eg:

Proposition 7.3. If the grammar G’ is not left-recursive and its every equation A = e1&eg|eq satisfies:

For each w € Tail(A), [eo] w ¥ z for some x € ¥*, (12)
L(e1)L(eg)X* N L(ez) Tail(A) = & . (13)

then [S] w %5 ¢ implies [S] w *5 .

A systematic way of choosing a suitable e is still to be found. A specific construction for strong LL(k) grammars
is shown in [5,6]. It results in £(eg) consisting of k-letter words.
To close the subject, we note this limitation:

Proposition 7.4. An expression eq satisfying (12) and (13) may exist only if

L(e1) Tail(A) N L(ez) Tail(A) = @ . (14)

Appendix: Proofs

Proof of Proposition 4.1

To be short, we shall say that e handles w” if for every w € X* there exists a proof of either [e] w %5 fail or
[e] w %5 y where w = xy. To show that each e € E handles every w € %*, we are use induction on the length
of w. The induction base is proved below as Lemma 4.1.B and induction step as Lemma 4.1.S. Both are proved
by induction on the size of First(e). We use an observation that if the grammar G is not left-recursive, the set
First(e’) where ¢’ € first(e) has fewer elements than First(e).

Lemma 4.1.S. Suppose G is not left-recursive, and each e € E handles all words of length less than given n > 0.
Then each e € E also handles all words of length n.

Proof:
Is by induction on the size of First(e). Consider a word w of length n.

(Induction base) Each e with First(e) of size 0 handles w.
Such e is either € or a € ¥.. From empty.p, letter.p1, and letter.p2 follows, respectively, €] w 5 w, [a] w ™5 x

if w = ax, and [a] w %3 fail otherwise.

(Induction step) Suppose each e with First(e) of size less than m > 0 handles w. Consider e’ with First(e’) of
size m. By induction hypothesis, each e € first(e’) handles w. Since m > 0, mustbe ¢’ = A € N. Two cases
are possible:



(Case 1) A = ejeo. We have e; € first(A), so e; handles w.
— If [e1] w %3 fail, we have [A] w %% fail by seq.p2.
— If [e;] w *3 w, we have ¢ € L(ey) by Proposition 4.2, so e; € first(A), and e handles w. We have
[ea] w %S Z where Z is either fail or z where w = yz. This gives [A] £ %3 Z by seq.pl.
— If [e1] w %3 y where w = 2y and x # &, y has length less than n and e, handles y according to the Lemma’s
assumption. We have [e3] y %5 Z where Z is either fail or 2 where w = yz. This gives [A] ¢ *% Z by seq.p1.
(Case 2) A = eq|es. Wehave ey € first(A) and e; € first(A), so each of 1, e5 handles w.

— If [e1] w %3 y where w = xy, we have [A] w 5 y by choice.pl.

— If [e1] w %3 fail, we have [es] w %5 Y where Y is either fail or y where w = yz. This gives [A] w %5 Y by
choice.p2.
In each case, ¢’ = A handles w.

Lemma 4.1.B. If G is not left-recursive, each e € E handles the word of length 0.

Proof:
The proof is almost identical to that of Lemma 4.1.S if we take w = ¢ and use letter.p3 instead of letter.p1, and
letter.p2 in the induction base. The third item in Case 1 is not applicable.

Proof of Proposition 4.2

We spell out the proof sketched in [6]. It is by induction on the height of the proof tree.

PEG [E] PEG

(Induction base) Suppose the proof of [e] xy ~> y has height 1. Then it has to be the proof of T ~= x or
[a] ax *% z using empty.p or letter.pl, respectively. But then, [e]  *5 x respectively [a] az *5 x by empty.b or
letter.b.
(Induction step) Assume that for every proof tree for [e] zy S y of height n > 1 there exists a proof of [e] zy %% y.
p Ty p Y g p Y
Consider a proof tree for [e] zy 5 y of height n + 1. Its last step must be one of these:
— [A] zyz %8 x derived from A = ejes, [e1] 2yz %3 yz, and [es] y2z 3 2 using seq.pl.
g seq.p
By induction hypothesis, [e1] zyz *% yz and [es] y2z *% 2z, so [A] zy *% x follows from seq.b.
— [A] 2y *5 x derived from A = ejey and [e1] 2y %5 y using choice.pl.
By induction hypothesis, [e1] zy ™ y, so [A] xy %5 x follows from choice.b1.
— [A] 2y %8 2 derived from A = ejes and [eq] 2y %3 fail, [es] 2y %35 y, using choice.p2.
g
By induction hypothesis, [e2] 2y ™% y, so [A] 2y %% x follows from choice.b2.

Proof of Proposition 4.3

Assume G satisfies the stated conditions. Take any w such that [S] w *% . We are going to show that for each

result [e] zy ® y in the proof tree of [S] w *% ¢ there exists a proof of [e] xy %5 y. We show it using induction on
BNF

the height of the proof tree. The “result” here means both partial result and the final [S] w %5 e.

BNF [8] BNF

(Induction base) Suppose the proof of [e] xy ~= y has height 1. Then it has to be the proof of T ~> x or
[a] ax *% z using empty.b or letter.b, respectively. But then, [e] # % x respectively [a] az %5 z by empty.p or
letter.p1.

BNF

(Induction step) Assume that for every result [e] xy =~ y that has proof tree of height n > 1 there exists a proof of
[e] 2y %S y. Consider a result [e] zy *% y with proof tree of height n + 1. Its last step must be one of these:
— [A] zyz *% 2 derived from A = ejeq, [e1] zyz ¥ yz, and [e2] yz *% 2z using seq.b. By induction hypothesis,
[e1] zyz S yz and [es] yz *%5 2, so [A] xyz %3 2 follows from seq.pl.
— [A] 2y ®= y derived from A = e1] e5 and [e1] 2y *% y using choice.b1. By induction hypothesis, [e1] Ty 5
y, 50 [A] zy %3 y follows from choice.p1.
— [A] 2y *¥ g, derived from A = e;|eq and [e3] zy ¥ y using choice.b2. By induction hypothesis, [es] xy %5
y. But, to use choice.p2 we also need to verify that [e;] zy %5 fail.
Suppose that there is no proof of [e1] xy =5 fail. Then, according to Proposition 4.1, there exists a proof of
[e1] uv %8 v where uv = zy. According to Proposition 4.2, there exists a proof of [e;] uv *% v, sou € L(ey).
From [ez] 2y *5 y follows 2 € L(e2). As A # S, we have y € Tail(A). From v € ¥* and uv = zy follows
L(e1)E* N L(ez) Tail(A) # @, which contradicts (1). We must thus conclude that there exists a proof of

[e1] zy %S fail, so there exists a proof of [A] xy % y using choice.p2.



Proof of Proposition 5.1

Assume ¢ ¢ L(e1) and X, Y as stated by (2)—(4). We have L(e1) = L(e1) —e C (L(X) —g)X*.
Each word in Tail(A) ends with $, so L(e3) Tail(A) = L(ez) Tail(A)) —e C (L(Y) — )X,
This gives L(e1)2* N L(ez) Tail(A) C (LX) —e)Z* N (L) —e)X* =@

Proof of Lemma 5.2

We note that £L(A) C first(A):

— If A=e;1|eq, wehave L(A) = L(first(A) C first(A) from L(X) C X.

- IfA=ejezande ¢ ey, we have L(A) = L(e1)L(e2) C {e1} = first(A) from (6).

-~ IfA=ejezande € e1, we have L(A) = L(e1)L(e2) C {e1,ea} = first(A) from (7).
Using the definition of T one can verify that L C A & E( B = LLC Bholdsfor A,B C €£.

) E
With A = {A} UXand B = first(A) UX, this gives LC A = L C first(A) U X with the help of (5) and
L(X) CX.

Proof of Lemma 5.3

BNF

Consider some A € N and y € Tail(A). By definition, there is a proof of [S] w *% ¢ that contains [A] xy *% y
as one of the partial results. This partial result must be used in a subsequent derivation. This derivation can only
result in one of the following:

(@) [A1] 2y ™ y where A; = A|e from [e] zy *% y using choice.bl.

(b) [A1] 2y *5 y where A; = e |A from [e] zy *% y using choice.b2.

(c) [A1] zay ™= y where A; = e A from [e] zxy *5 xy using seq.b.

(d) [A1] xy *¥ y where A; = Ae from [e] ey "% y using seq.b.

(e) [A1] zy'y" *% o where Ay = AB, y'y" = yand y’ # ¢ from [B] y'y" *¥ 3" using seq.b.

In each of the cases (a)-(d), the result is similar to the original one, and the alternative derivations (a)-(e) apply
again. We may have a chain of derivations (a)-(d), but it must end with (e) as y must eventually be reduced. We
have thus in general a sequence of steps of this form:

[Ao) zy *¥ y ... asin(a)-(d)

[A]] xiy ™y ... asin(a)-(d)

[Ag] 22y *¥ y ... asin(a)-(d)
[Ap—1] Tno1y ™y ... asin(a)-(d)

Anir = AnB_[An)any ™y [Bly'y"* 4"

1

[Anta] zny/y" =y

where Ag = Aand n > 0. We have A; € Last(A4y), Az € Last(4,), etc., A,, € Last(A,_1), and B €
Next (A, ), which means B € Follow(A). From [B] 3/'y" *% ¢ we have y' € L(B); since y = y'y” and ¢’ # e,
we have L(B) — eX* C L(Tail(A)).

Proof of Proposition 7.1

PEG

The proof is the same as that of Proposition 4.1, with the difference that ~3 applies to G’, first is extended by
the additional rule, and the following case added in the proof of Lemma 4.1.S:

(Case 3) A = e1&eq| e2. We have eq, e1,es € first(A), so each of ey, e, e; handles w.
— If[e1] w %8 y where w = xy and [eg] y *5 2, we have [A] w S y by choice. p3
— If [e1] w %3 y where w = xy and [eg] y *> fail, we have, by choice.p4, [e2] w %5 Y where Y is either fail or
y where w = yz.
PEG

— If [e1] w %3 fail, we have [es] w ™5 Y we have, by choice.p5, [es] w ™5 Y.



Proof of Proposition 7.2

The proof is the same as that of Proposition 4.3 with the difference that =3 applies to G’, and an additional case

where e in the last step in the proof of [¢] zy *% y is the expression A = e;&eg|ez of G'. There are two
possibilities:

(1) [A] 2y %5 y is derived from [e1] 2y ~5 y using choice.p3. (The proof for e is irrelevant.) By induction
hypothesis there exists a proof of [e;] xy *~ y. We have [A] zy * y from choice.b1.

() [A] zy %5 y is derived from [es] xy %5 y using choice.p4 or choice.p5. (The proofs for e; and eq are
irrelevant.) By induction hypothesis there exists a proof of [e2] zy *% y. We have [A] xy *5 y from choice.b2.

Proof of Proposition 7.3

PEG BNF

Recall that ~5 applies to G’, while % applies to G. The proof is identical to that of Proposition 4.3 except for
the case where e in the last step in the proof of [¢] xy *% y is the expression A = e;|ey that is replaced by
A = e1&eq| e2 in G'. (In the case where A = e;] es is not changed in G, the proof of Proposition 4.3 still applies,
as the expression as assumed to satisfy (1).) Two cases are possible:

(1) [A] w2y *¥ y is derived from [e1] 2y *% y using choice.bl. By induction hypothesis there exists a proof of
le1] 2y 5 y. As A # S, we have y € Tail(A). According to (12), we have [eg] y * z for some z. We have
[A] zy "% y from choice.p3.

(2) [A] zy ®¥ y is derived from [es] 2y *% y using choice.b2. By induction hypothesis there exists proof of
[e2] 2y "5 y. If [e1] zy %5 fail, we have [A] xy %5 y from choice.p4.

If e; does not fail on zy then by Proposition 7.1 exists a proof of [e1] uvw *5 vw for some uvw = xyz. By
Proposition 7.2 exists a proof of [e;] uvw *% vw, which means u € L(e1). Suppose ey does not fail on uv.
Then, by Proposition 7.1 exists a proof of [eg] st *5 t where st = uv. By Proposition 7.2 exists a proof of
[eo] st *5 t, which means s € L(eg). Thus zyz = uvw = ust € L(e1)L(eo)L*. But [es] xyz ** yz means
zyz € L(e3) Tail(A), which contradicts (13); thus, [eo] vw ~5 fail, and we have [A] zyz *5 yz from choice.p5.

Proof of Proposition 7.4

Suppose (14) is false, so there exist u € L(e1),v € Tail(A),z € L(e2),y € Tail(A) such that uv = xy. Suppose
there exists eq satisfying (12) and (13). According to (12) exist w, 2 € X* such that wz = v and [eg] wz =5 z.
By Proposition 4.2, w € L(eg), which means uv = uwz € L(e1)L(eg)X*. As uwz = zy € L(ez) Tail(A), this
contradicts (13).
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