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Abstract

The paper is an attempt to see how much we can learn about a given Parsing Expression Grammar
with the help of classical concepts used in the construction of predictive top-down parsers.

1 Introduction

This is a sequel to the author’s papers [4, 5] on Parsing Expression Grammars. Parsing Expression
Grammar (PEG), as introduced by Ford [2, 3], is a way to define a recursive-descent parser with limited
backtracking. The parser does not require a separate ”lexer” to preprocess the input, and the limited
backtracking lifts the LL(1) restriction usually imposed by top-down parsers. These properties are useful
in many applications. However, PEG is not well understood as a language specification tool. One of the
things attempted in [5] was to find the language defined by a given parsing expression. Unfortunately, it
was only possible to obtain some approximations that became more and more difficult as the complexity
of the expression increased.
In this paper, we take some classical concepts used in the construction of predictive top-down parsers,

adapt them to the world of PEGs, and try to see how much we can learn with their help.

2 Parsing Expression Grammar

We recall that Parsing Expression Grammar is a set of parsing expressions, specified by rules of the form
A = e, where e is a parsing expression and A is the name given to it. Parsing expressions are instructions
for parsing strings, written in a special language. In the following, we view parsing expression as a
procedure that carries out such instruction. The expressions can call each other recursively, thus forming
together a recursive-descent parser.
In general, parsing expression is applied to a character string – the ”input” to be parsed – at a

position indicated by some ”cursor”. It tries to recognize a portion of the string ahead of the cur-
sor. If it succeeds, it ”consumes” the recognized portion by advancing the cursor and indicates ”suc-
cess”; otherwise, it indicates ”failure” and does not consume anything (does not advance the cursor).
The following four kinds of parsing expressions work directly on the input string:

"s" where s is a nonempty character string.
If the text ahead starts with the string s, consume that string and indicate success.
Otherwise indicate failure.

[s] where s is a nonempty character string.
If the text ahead starts with a character appearing in s, consume that character and
indicate success. Otherwise indicate failure.

[c1- c2] where c1, c2 are two characters.
If the text ahead starts with a character from the range c1 through c2, consume that
character and indicate success. Otherwise indicate failure.

(underscore character). If there is a character ahead, consume it and indicate success.
Otherwise (that is, at the end of input) indicate failure.

∗Appeared in Fundamenta Informaticae 93, 1-3 (2009) 325–336.
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These expressions are analogous to terminals of a classical context-free grammar, and are in the following
referred to as ”terminals”. The remaining five kinds of parsing expressions call other expressions to do
their job:

e1/e2 (Choice) Call expression e1. Indicate success if it succeeded. Otherwise call expression
e2 and indicate success if e2 succeeded or failure if it failed.

e1 e2 (Sequence) Call expression e1. If it succeeded, call expression e2, and indicate success
if e2 succeeded. If e1 or e2 failed, reset cursor as it was before the invocation of e1
and indicate failure.

!e (Lookahead) Call expression e and then reset the cursor as it was before the invocation
of e. Indicate success if e failed or failure if e succeeded.

e* (Iteration) Call expression e repeatedly as long as it succeeds.
Indicate success (even if e did not succeed a single time).

e? (Optional) Call expression e and indicate success (even if e failed).

The expressions e, e1, e2 may be specified either explicitly or by name. Parentheses may be used to
indicate the order of applying the operators. In the absence of parentheses, operators appearing lower
in the above list have precedence. (The expressions shown here are simpler than those in [4, 5], but the
missing forms can be constructed from them.)
Backtracking takes place in the Sequence expression. If e1 succeeds and consumes some input, and

then e2 fails, the cursor is moved back to where it was before trying e1. If this Sequence was called as
the first alternative in a Choice expression, Choice has an opportunity to try another alternative on the
same input. However, the opportunity to try another alternative is limited: once e1 in the Choice e1/e2
succeeded, e2 will never be tried on the same input, even if the parse fails later on.

3 Some notation

In the following, we consider a fixed grammar. The set of all its expressions is denoted by G. All sub-
expressions are treated as separate members of G. When we speak of ”an expression”, we always mean
a member of G. Some of the expressions must be terminals; their set is denoted by T ⊆ G.

Let Σ be the input alphabet. For x, y ∈ Σ∗, x is a prefix of y if y = xu for some u ∈ Σ∗; y is a tail of x
if x = uy for some u ∈ Σ∗. We write x ≤ y to mean that x is a prefix of y. For X ⊆ Σ∗, Pref(X) denotes
the set of all prefixes of x ∈ X. The tail of w ∈ Σ∗ starting at position p is denoted by w[ p ]. The empty
word is denoted by ε. If an expression succeeds without consuming any string, we say that it consumed
ε.
For an expression e and w ∈ Σ∗, we write c (e, w) = x to mean that e succeeds when called at the

start of w and consumes x. We write c (e, w) = φ to mean that e fails when called at the start of w. The
language of expression e is defined as

L(e) = {x ∈ Σ∗ | c (e, xy) = x for some y ∈ Σ∗} .

Note that x ∈ L(e) does not necessarily mean c (e, xy) = x for an arbitrary string y. However,
x ∈ L(e) ⇒ c (e, xy) = x for all e ∈ T and y ∈ Σ∗.
A relation R on G is a subset of G × G. As usual, we write R(e) to mean the set of all e′ such that

(e, e′) ∈ R, and R(E) to mean the union of R(e) for all e ∈ E ⊆ G. The identity relation is denoted by I.
The transitive closure of R is denoted by R+, the transitive and reflexive closure by R∗, and the product
of relations R and S by R× S.

4 The parsing process

We consider a parsing process that begins by calling some ”starting expression” S with cursor at the
beginning of an input string w.
We say that expression e was ”called at position p” to mean that it was called with cursor at position p

in w. If e succeeds, it may move the cursor to some position q ≥ p. We say then that e ”succeeded
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at q”. (We have q = p if e consumed empty word.) If e fails, we say that e ”failed at p”. We say that e
”terminated at p” to mean that e either succeeded at p or failed at p. If the expression that terminated
is S, the parsing process ends. Otherwise the expression ”returns to” its caller.
We are interested in movements of the cursor as the result of executing the expressions. Note that even

if e terminates with unchanged cursor, the cursor could have changed in the process of evaluating e. For
example: e1 in e = e1 e2 consumed a non-null string, after which e2 failed. We include this possibility
when we say that e moved the cursor. A failing terminal never moves the cursor.

5 Properties of expressions

The classical construction of predictive top-down parsers for BNF grammars uses two properties of
grammar symbols: FIRST – the set of possible first letters in a string derived by the symbol, and
FOLLOW – the set of letters that may follow a string derived by the symbol. (See, for example,
[1] Section 4.4, [7] Section 6.2.) We are going to define analogous properties for parsing expressions.

5.1 Nullability, fallibility, and well-formedness

We shall need three properties of expressions defined by Ford in [3]. We call them here nul (nullable),
adv (may advance), and fail (may fail). We treat them as subsets of G that contain expressions with
the respective property. These sets are defined by means of recursive formulas and can be computed by
iteration. The following is shown to hold for all e ∈ G:

If c (e, w) = ε for some w ∈ Σ∗ then e ∈ nul . (1)

If c (e, w) = x ∈ Σ+ for some w ∈ Σ∗ then e ∈ adv . (2)

If c (e, w) = φ for some w ∈ Σ∗ then e ∈ fail . (3)

Note that these implications can not, in general, be reversed.
The evaluation of an expression e may never terminate, because of infinite recursion or iteration. Such

e may have none of the above properties, but may have some of them (if it terminates for some input
strings).
Termination is handled in [3] by another property of an expression, denoted by WF (well-formed).

This property is again defined by means of recursive formulas and can be evaluated by iteration. It is
shown that if all expressions are well-formed, the evaluation of every expression always terminates. The
grammar is then said to be well-formed. A well-formed grammar is not left-recursive and does not contain
any expression e∗ with e ∈ nul .
In the following, we assume G to be well-formed.

5.2 Relation FIRST

A non-terminal expression E processes input by calling its subexpressions as specified in Section 2.
A subexpression e thus called is said to be ”directly called” by E. If e then calls its subexpression e1,
this latter is ”indirectly called” by E; the same applies to a subexpression e2 called by e1, etc..

Define the relation First on G to consist of all pairs (E, e) such that one of the following holds:

– E = e/e1 for some e1 ;
– E = e1/e for some e1 ∈ fail ;
– E = e e1 for some e1 ;
– E = e1e for some e1 ∈ nul ;
– E = ! e ;
– E = e∗;
– E = e?.

One can easily verify:

Proposition 1. If expression E called at position p directly calls e at the same position, then
e ∈ First(E).
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By induction on the number of intermediate calls, we have:

Proposition 2. If expression E called at position p calls e at the same position, either directly or
indirectly, then e ∈ First+(e).

Define FIRST = First∗ ∩T .

Proposition 3. If expression e called at p moved the cursor, there exists t ∈ FIRST(e) and u ∈ L(t)
such that u ≤ w[ p ].

Proof. Moving the cursor means that some non-null string x ≤ w[ p ] was consumed during evaluation of
e. A prefix u ≤ x of that string must have been consumed by some terminal t ∈ T called at p. That t is
either e itself or was called by e, directly or indirectly. By Proposition 2, we have t ∈ {e} ∪ First+(e),
that is, t ∈ First∗(e). Obviously u ∈ L(t) and u ≤ w[ p ].

5.3 Disjoint expressions

Define terminals t1 and t2 to be disjoint, denoted by t1≍ t2, if for every x ∈ L(t1) and y ∈ L(t2) neither
x ≤ y nor y ≤ x.
We have, for example,"ab"≍ "ac", but "ab" ̸≍ [a-z] and "ac" ̸≍ [a-z]. Obviously, t1 ̸≍ t2 whenever

L(t1) ∩ L(t2) ̸= ∅.
Define expressions e1 and e2 to be disjoint, written e1 ≍ e2, if t1 ≍ t2 for every t1 ∈ FIRST(e1) and

t2 ∈ FIRST(e2).
Define expression e to be disjoint with a set E of expressions, written e≍ E , if e≍ e1 for each e1 ∈ E .

Proposition 4. If each of two expressions independently called at the same position moves the cursor,
these expressions are not disjoint.

Proof. Suppose e1 called at p moved the cursor. According to Proposition 3 exist t1 ∈ FIRST(e1) and
u ∈ L(t1) such that u ≤ w[ p ]. Suppose e2 called at p also moved the cursor. According to Proposition 3
exist t2 ∈ FIRST(e2) and v ∈ L(t2) such that v ≤ w[ p ]. From u ≤ w[ p ] and v ≤ w[ p ] follows u ≤ v or
v ≤ u, so t1 ̸≍ t2, and thus e1 ̸≍ e2.

5.4 Relations FOLLOW

Consider the situation when an expression terminated and returns to its caller. The caller may then
terminate without moving the cursor, or backtrack, or call another expression. The possible scenarios
are detailed in the Appendix. There may be a chain of nested expressions that return to their callers
without moving the cursor.

Define the following four relations on G:
• Relation Lastss consisting of all pairs (e,E) such that one of the following holds:
– E = e/e1 for some e1 ;
– E = e1/e for some e1 ∈ fail ;
– E = e e1 for some e1 ∈ nul ;
– E = e1 e for some e1 ;
– E = e∗;
– E = e?.

• Relation Lastsf consisting of all pairs (e,E) such that one of the following holds:
– E = e e1 for some e1 ∈ fail , and e ∈ nul ;
– E = ! e, and e ∈ nul .

• Relation Lastfs consisting of all pairs (e,E) where e ∈ fail and one of the following holds:
– E = e/e1 for some e1 ∈ nul ;
– E = ! e ;
– E = e∗ ;
– E = e? .
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• Relation Lastff consisting of all pairs (e,E) where e ∈ fail and one of the following holds:
– E = e/e1 for some e1 ∈ fail ;
– E = e1/e for some e1 ∈ fail ;
– E = e e1 ;
– E = e1 e for some e1 ∈ nul .

By inspection of scenarios in the Appendix, one can verify:

Proposition 5. Whenever e returned to its caller E and E terminated without moving the cursor,
then:

– If both e and E succeeded, E ∈ Lastss(e);
– If e succeeded and E failed, E ∈ Lastsf (e);
– If e failed and E succeeded, E ∈ Lastfs(e);
– If both e and E failed, E ∈ Lastff (e).

These four relations can be summarized by one relation Last on the set of pairs (e, o) where e ∈ G and
o ∈ {succ,fail}. Namely, define:

– ((e, succ), (E, succ)) ∈ Last iff (e,E) ∈ Lastss,
– ((e, succ), (E, fail)) ∈ Last iff (e,E) ∈ Lastsf , etc..

After taking the transitive closure of Last, we can recover four relations, LASTss, LASTsf , LASTfs, and
LASTff having this property:

Proposition 6. Whenever a return from e resulted in a termination of E without moving the cursor,
either immediately or via a chain of returns that did not move the cursor, then:

– If both e and E succeeded, E ∈ LASTss(e);
– If e succeeded and E failed, E ∈ LASTsf (e);
– If e failed and E succeeded, E ∈ LASTfs(e);
– If both e and E failed, E ∈ LASTff (e).

Define now the relation Nexts on G to consist of all pairs (e, e1) such that one of the following holds:

– E = e e1 for some E ∈ G ,
– E = e∗ for some E ∈ G and e = e1 ,

and the relation Nextf consisting of all pairs (e, e1) such that:

– E = e/e1 for some E ∈ G and e ∈ fail .

By inspection of scenarios in the Appendix, one can verify:

Proposition 7. Whenever e returned to its caller E after terminating at position p and E called an
expression e1 that moved the cursor, then:

– If e succeeded, e1 ∈ Nexts(e);
– If e failed, e1 ∈ Nextf (e).

Finally, define:

FOLLOWs = (LASTss ∪ I)×Nexts ∪ LASTsf ×Nextf ;

FOLLOWf = (LASTff ∪ I)×Nextf ∪ LASTfs ×Nexts .

Proposition 8. After an expression e terminated at p, one of the following must occur after one or more
returns that do not move the cursor:

(a) The parser terminates at p.
(b) The parser backtracks from p.
(c) An expression e1 called at p moves the cursor. Then, if e succeeded, e1 ∈ FOLLOWs(e);

if e failed, e1 ∈ FOLLOWf (e).

Proof. Clearly, one of (a)–(c) must eventually happen. It remains to check the conditions stated for (c).
Consider first the case where e succeeded. Suppose e returned to its caller E and E called e1. Then,
by Proposition 7, e1 ∈ Nexts(e), so e1 ∈ ( I×Nexts)(e). Suppose now e returned to its caller E1 which
returned to its caller E2 without moving cursor, which, etc., etc., returned to En without moving cursor,
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which returned to En+1 without moving cursor, after which En+1 called e1. If En was successful, we have,
by Proposition 6, En ∈ LASTss(e) and, by Proposition 7, e1 ∈ Nexts(En), so e1 ∈ (LASTss ×Nexts)(e).
Similarly, if En failed, we have e1 ∈ (LASTsf ×Nextf )(e). In each case e1 ∈ FOLLOWs(e). The proof
for failed e is analogous.

6 Using the properties

6.1 Safe choice

Define the expression E = e1/e2 to be safe if it satisfies these four conditions:

e1 /∈ nul ; (4)

e1≍ e2 ; (5)

e2 ∈ nul ⇒ e1≍ FOLLOWs(E) ; (6)

e2 ∈ fail ⇒ e1≍ FOLLOWf (E) . (7)

Proposition 9. Suppose a safe expression E = e1/e2 is called at p. If e1 failed after moving the cursor,
the parser will not move the cursor before it backtracks from p or terminates at p.

Proof. Let E be called as stated. Suppose e1 failed after advancing from p. Expression e2 is now called
at p. According to (5) and Proposition 4, e2 will not advance, meaning it either consumes ε or fails. If
e2 consumes ε, E succeeds at p. If e2 fails, E fails at p. According to Proposition 8, one of the following
must now occur after one or more returns that do not move the cursor:
(a) The parser terminates at p.
(b) The parser backtracks from p.
(c) An expression e called at p moves the cursor.
If E succeeded, e ∈ FOLLOWs(e). By (1) we have e2 ∈ nul , so this is excluded by (6) and Proposition 4.
If E failed, e1 ∈ FOLLOWf (e). By (3) we have e2 ∈ fail , so this is excluded by (7) and Proposition 4.
Thus, only (a) and (b) are possible.

In other words, the property of being safe ensures that once e1 failed and backtracked, the input
rejected by it will not be reprocessed until the parser backtracks from the start of E. The only possible
actions on the way are failing tests by terminals.
A phenomenon that causes much difficulty in understanding a PEG is what was in [4] loosely called

”prefix capture”, but could be better described as ”language hiding”. It is the case where a greedy first
expression in e1/e2 prevents e2 from being applied to inputs that it could otherwise accept (e2 is not tried
once e1 succeeded). As a result, L(e1/e2) is not, as one could expect, L(e1)∪L(e2), but has some, or all,
of L(e2) missing. Classical examples are "a"/"aa" where the second alternative will never succeed, and
"aa"/"a" where the second alternative is not exercised on input beginning with aa. Note that hiding
in this latter case depends on the input ahead. Constructions like this may be intentional; for example,
defining comparison operator as "=<"/"=" ensures that the first "=" in "=<" will never be recognized
separately. However, the effect may be unexpected and difficult to detect in a complex grammar. Some
warning is thus desirable.
Let us define ”language hiding” more precisely as the situation where e1 in E = e1/e2 succeeds on

some input but parsing fails later on; applying e2 at the same position would result in a successful parse
that would consume at least some input.

Proposition 10. Language hiding does not occur in a safe E = e1/e2.

Proof. Suppose a safe expression E = e1/e2 is called at input position p. That means expression e1 is
called at position p. Suppose it succeeds; according to (4) and (1), it consumes a nonempty word, thus
moving the cursor. Suppose e2 is applied instead at the same position. According to Proposition 9, the
parser will not advance until it either terminates at p or backtracks from p.

Safety is a very strong condition that results in many false warnings. Schmitz formulated in [6] a weaker,
but still not necessary, condition for absence of language hiding. It is called ”general semi-disjointness”
and can be somewhat informally expressed as

L(e1) ∩ Pref(L(e2)L(follow(E))) = ∅ , (8)
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where follow(E) is any sequence of expressions that can be called after E. Unfortunately, its mechanical
verification is not simple.

6.2 Safe iteration

Another case of language hiding is by a greedy star operator. For example, "ab" in the expression
"a"* ("ab"/"c") will never succeed. We can define this case as the situation where e∗ succeeds after
calling e for n > 1 times and the subsequent parse fails; however, the subsequent parse succeeds and
consumes some input if e is called only m < n times.
Define expression E = e∗ to be safe if:

e≍ FOLLOWs(E) . (9)

Proposition 11. Language hiding does not occur in a safe E = e∗.

Proof. Suppose E = e∗ succeeded after n > 1 calls to e. Suppose now that E instead returned success
at p after calling e only m < n times. According to Proposition 8, one of the following must now occur
after one or more returns that do not move the cursor:
(a) The parser terminates at p.
(b) The parser backtracks from p.
(c) An expression e1 ∈ FOLLOWs(E) called at p moves the cursor.
Because G is well-formed, we have e /∈ nul ; according to (1), the (m + 1)-th call to e consumed x ̸= ε,
thus moving the cursor. The case (c) is thus excluded by (9) and Proposition 4.

Again, one can formulate a weaker condition for the absence of language hiding:

(L(e))+ ∩ Pref(L(follow(E))) = ∅ , (10)

but its mechanical verification is not simple.

7 Experiments

To see in practice how much can be learned about a given PEG from the properties defined above, the
author implemented a PEG analyzer to compute them. The relations FIRST and FOLLOWwere easy
to obtain using binary matrices.
Applied to a number of grammars, the analyzer clearly identified areas free from backtracking (in

the sense of reprocessing the input). The resulting diagnostics indicated places that had to be further
analyzed. Two typical cases are illustrated below.

The following is an example of PEG from [5], together with the message produced for it by the analyzer:

sum = space number (sign number)* ";"

number = real / integer

real = digits? "." digits space

integer = digits space

sign = [+-] space

digits = [0-9][0-9]*

space = [ ]*

Conflicting alternatives in number: real / integer

[0-9] in digits and [0-9] in digits

The message says that the expression for number is not safe: it does not satisfy (5) because both real

and integer start with the terminal [0-9], which is the first subexpression in digits. This is the only
possibility of backtracking in the whole grammar. One can see by inspection that number satisfies (8):
any string x ∈ L(real) starts with a decimal point, or with digits followed by a decimal point. Any
string y ∈ L(integer)L(follow(number))) starts with digits followed by a plus, minus, or semicolon, so x
cannot be a prefix of y. No part of L(integer) is thus hidden by real.
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The second example is a grammar for simple polynomials with plus for sum and juxtaposition for
product. As in the previous example, white space is allowed around the variable names and the plus.

poly = space term (plus term)* ";"

term = name name*

name = [a-z][a-z]* space

plus = "+" space

space = [ ]*

Conflict with follow in name: [a-z]*

[a-z] in [a-z]* and [a-z] in name

The analyzer message says in this case that [a-z]* in name does not satisfy (9) and may gobble up [a-z]

in something that follows name. By inspection one can see this ”something” to be another name in term,
because space may be an empty string. Indeed, if two names are not separated by white space, the parser
will read them as a single name. The question is if one should do anything about that. Probably nothing,
because the parser will understand the text in the same way as a human reader.
The experiments revealed one serious problem, namely treatment of the lookahead operator. The

problem is encountered on a large scale in grammars that define reserved words. The words used as
identifiers must be distinct from reserved words. This can be specified in the grammar as shown below:

phrase = key / name

name = !key [a-z][a-z]*

key = ("plus"/"minus") ![a-z]

The lookahead !key prevents a key from being recognized as a name. The lookahead ![a-z] prevents
key from consuming a prefix of a longer word; otherwise "plusTwo" would not be recognized as a name.
The analyzer produced these messages for this grammar:

Conflicting alternatives in phrase: key / name

"plus" in key and [a-z] in name, "plus" in key

"minus" in key and [a-z] in name, "minus" in key

Conflict with followf in key: "plus" / "minus"

"plus" in key and [a-z] in name, "plus" in key

We have FIRST(!key) = {"plus", "minus"} and FIRST(![a-z]) = {[a-z]}. Since !key is nullable,
FIRST(name) contains "plus", "minus", and [a-z]. As "plus" ̸≍ [a-z] and "minus" ̸≍ [a-z], the
choice key/name violates (5), and the choice "plus"/"minus" violates (7). The analyzer listed these
facts, but they are false warnings.
Running the analyzer for the entire Java grammar produced 227 messages, almost all of this kind. Any

real diagnostics were drowned by them.

8 Conclusions

The classical properties like FIRST and FOLLOW can be redefined for PEG and are simple to obtain
even for a large grammar. One difference is that instead of letters we have here terminal expressions,
which may mean sets of letters, or strings. Another is a more complicated definition of FOLLOW.
We have used FIRST and FOLLOW to define conditions for choice and iteration that are analogous

to the classical LL(1) conditions, although they have a different form and meaning.
Checking these conditions produces useful information like the absence of reprocessing or language

hiding. This helps to locate places that need further examination.
Unfortunately, most results obtained here have the form of implications that cannot, in general, be

reversed. The properties FIRST and FOLLOW are kind of upper bounds, and conditions using them are
sufficient, but not necessary. This results in false warnings. In particular, the lookahead operator ”!”
may trigger a whole avalanche of them. A proper handling of this operator is thus an obvious target for
further work.
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Appendix

What happens after expression e terminated at p and returns to its caller E.
(*) indicates the cases when E terminates without moving the cursor from p.

Scenario 1. Expression e succeeded. Then:

If E = e/e1, E succeeds at p. (*)
If E = e1/e, E succeeds at p. (*)
If E = e e1, E calls e1 at p. These are possible outcomes:

– e1 succeeds:
- If e1 moved the cursor, E succeeds at q ≥ p.
- If e1 did not move the cursor, E succeeds at p. (*)

– e1 fails:
- If e moved the cursor, E fails at q ≤ p (backtracks if q < p).
- If e did not move the cursor, but e1 did, E fails at p.
- If neither e nor e1 moved the cursor, E fails at p. (*)

If E = e1 e, E succeeds at p. (*)
If E = ! e, E fails:

– If e moved the cursor, E fails at q ≤ p (backtracks if q < p).
– If e did not move the cursor, E fails at p. (*)

If E = e∗, E calls e again. These are possible outcomes:

– The new e succeeds. E keeps calling e until e fails.
Eventually E succeeds at q > p (note: e /∈ nul ).

– The new e fails after moving the cursor. E succeeds at p.
– The new e fails without moving the cursor. E succeeds at p. (*)

If E = e?, E succeeds at p. (*)

Scenario 2. Expression e failed. Then:

If E = e/e1, E calls e1 at p. These are possible outcomes:

– e1 succeeds.
- If e1 moved the cursor, E succeeds at q ≥ p.
- If e1 did not move the cursor, E succeeds at p. (*)

– e1 fails.
- If e1 moved the cursor, E fails at p.
- If e1 did not move the cursor, E fails at p. (*)

If E = e1/e, E fails at p. (*)
If E = e e1, E fails at p. (*)
If E = e1 e, E fails.

– If e moved the cursor, E fails at q ≤ p (backtracks if q < p).
– If e did not move the cursor, E fails at p. (*)

If E = ! e, E succeeds at p. (*)
If E = e∗, E succeeds at p. (*)
If E = e?, E succeeds at p. (*)
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