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Abstract

Parsing Expression Grammar (PEG) is a new way to specify syntax, by means of a top-down process
with limited backtracking. It can be directly transcribed into a recursive-descent parser. The parser
does not require a separate lexer, and backtracking removes the usual LL(1) constraint. This is
convenient for many applications, but there are two problems: PEG is not well understood as a
language specification tool, and backtracking may result in exponential processing time. The paper
consists of two parts that address these problems. The first part is an attempt to find out the
language actually defined by a given parsing expression. The second part reports measurements of
backtracking activity in a PEG-derived parser for the programming language C.

1 Introduction

Parsing Expression Grammar (PEG) is a new way to specify syntax, recently introduced by Ford [6–8].
The grammar is a formal description of a recursive-descent parser with limited backtracking.
Recursive-descent parsers have been around for a while. Already in 1961, Lucas [13] suggested the

use of recursive procedures that reflect the syntax of the language being parsed. His design did not
allow backtracking; an explicit assumption about the syntax (section 1.13211) was identical to what
later became known as LL(1). The great advantage of recursive-descent parsers is transparency: the
code closely reflects the grammar, which makes it easy to maintain and modify. However, manipulating
the grammar to force it into the LL(1) mold can make the grammar itself unreadable. The use of
backtracking removes the LL(1) restriction. Complete backtracking, meaning an exhaustive search of all
alternatives, may require an exponential time. A reasonable compromise is limited backtracking, also
called ”fast-back” in [12]. In that approach, we discard further alternatives once a sub-goal has been
recognized.
Limited backtracking was adopted in at least two of the early top-down designs: the Atlas Compiler

Compiler of Brooker and Morris [5, 20], and TMG (the TransMoGrifier) of McClure [15]. The syntax
specification used in TMG was later formalized and analyzed by Birman and Ullman [3, 4]. It appears
in [2] as ”Top-Down Parsing Language” (TDPL) and ”Generalized TDPL” (GTDPL). Parsing Expression
Grammar is a development of this latter.
Parsing Expression Grammar is designed for a unified syntax definition, that does not require a separate

”lexer” or ”scanner”. Together with the lifting of the LL(1) restriction, this gives a very convenient tool
when we need an ad-hoc parser for some application.
One problem with PEG is just its new approach to specify syntax. Although PEG looks very much

like the Extended Backus-Naur Form (EBNF), it is not EBNF. It is an algorithm, and defines whatever
that algorithm happens to accept. Writing PEG for a language specified in EBNF offers many surprises
and is basically a trial-and-error process. It has to be better understood. After a brief introduction to
PEG in Section 2, we try, in Section 3, to find out what is actually defined by a given parsing expression.
Another problem with PEG is just the backtracking. Even the limited backtracking may require a lot

of time. In [6,7], PEG was introduced together with a technique called packrat parsing. Packrat parsing
handles backtracking by extensive memoization: storing all results of parsing procedures. It guarantees
linear parsing time at a large memory cost1.

∗Appeared in Fundamenta Informaticae 85, 1-4 (2008) 441–454.
1”Packrat” comes from pack rat – a small rodent (Neotoma cinerea) known for hoarding unnecessary items; also a person

that does the same. ”Memoization”, introduced in [16], is the technique of reusing stored results of function calls instead
of recomputing them.
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Excessive backtracking does not matter in small interactive applications such as [18], where the input is
short and performance not critical. But, the author had a feeling that the usual programming languages
do not require much backtracking. The feeling was based on the observation that these languages have
large LL(1) parts, and that limited backtracking prevents the parser from going back farther than to the
beginning of a statement. An experiment reported in [19] indeed demonstrated a moderate backtracking
activity in a PEG parser for Java 1.5. Section 4 reports similar results for the programming language C.

2 Parsing Expression Grammar

Parsing Expression Grammar is a set of named parsing expressions. They are specified by rules of the
form A = e where e is a parsing expression and A is the name given to it. Parsing expressions are
instructions for parsing strings. When applied to a character string, parsing expression tries to match
initial portion of that string, and may ”consume” the matched portion. It may then indicate ”success”
or ”failure”.
Figure 1 lists all forms of parsing expressions. Each of e, e1, . . . , en in the Figure is a parsing expression,

specified either explicitly or by its name. Subexpressions may be enclosed in parentheses to indicate the
order of applying the operators. In the absence of parentheses, the operators appearing lower in the table
have precedence over those appearing higher. Note the backtracking involved in three constructions: the
sequence and the two predicates.

e1/ . . . /en Ordered choice: Apply expressions e1, . . . , en, in this order, to the text ahead, until
one of them succeeds and possibly consumes some text. Indicate success if one of
expressions succeeded. Otherwise do not consume any text and indicate failure.

e1 . . . en Sequence: Apply expressions e1, . . . , en, in this order, to consume consecutive
portions of the text ahead, as long as they succeed. Indicate success if all succeeded.
Otherwise do not consume any text and indicate failure.

&e And predicate: Indicate success if expression e matches the text ahead; otherwise
indicate failure. Do not consume any text.

!e Not predicate: Indicate failure if expression e matches the text ahead; otherwise
indicate success. Do not consume any text.

e+ One or more: Apply expression e repeatedly to match the text ahead, as long as it
succeeds. Consume the matched text (if any) and indicate success if there was at
least one match. Otherwise indicate failure.

e∗ Zero or more: Apply expression e repeatedly to match the text ahead, as long as it
succeeds. Consume the matched text (if any). Always indicate success.

e? Zero or one: If expression e matches the text ahead, consume it. Always indicate
success.

[ s ] Character class: If the character ahead appears in the string s, consume it and
indicate success. Otherwise indicate failure.

[ c1-c2 ] Character range: If the character ahead is one from the range c1 through c2, consume
it and indicate success. Otherwise indicate failure.

”s” String: If the text ahead is the string s, consume it and indicate success. Otherwise
indicate failure.

Any character: If there is a character ahead, consume it and indicate success.
Otherwise (that is, at the end of input) indicate failure.

Fig.1.
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Parsing Expressions:

sum = number (sign number)* !_

number = real / integer

real = digits? "." digits space?

integer = digits space?

sign = [+-] space?

digits = [0-9]+

space = [ ]*

Parsing Expressions translated to Java procedures:

boolean sum() {

init(); boolean integer() {

if (!number()) return reject(); init();

while (sum_1()); if (!digits()) return reject();

if (next()) return reject(); space();

return accept(); } return accept(); }

boolean sum_1() { // sum_1 = sign number

init(); boolean sign() {

if (!sign()) return reject(); init();

if (!number()) return reject(); if (!nextIn("+-")) return reject();

return accept(); } space();

return accept(); }

boolean number() {

init();

if (real()) return accept(); boolean digits() {

if (integer()) return accept(); init();

return reject(); } if (!nextIn(’0’,’9’)) return reject();

while (nextIn(’0’,’9’));

boolean real() { return accept(); }

init();

digits();

if (!next(’.’)) return reject(); boolean space() {

if (!digits()) return reject(); init();

space(); while (next(’ ’));

return accept(); } return accept(); }

Fig.2.

Figure 2 shows, highest up, a sample grammar in PEG formalism. It defines syntax for writing simple
sums of numbers, with white space around, but not within, the numbers. Note that ”! ” means ”no
character ahead”, that is, ”end of input”. The rest of the Figure shows the expressions translated to
Java procedures. The procedures use a number of common methods. Method init() stacks an object
representing a call to the procedure; the object contains current input position. Method accept()

unstacks the call object and returns true; reject() resets input position from the call object, unstacks
the call object and returns false. Methods next(...) and nextIn(...) look at the next character and
either consume it returning true, or return false; next() without argument consumes the next character
and returns true, or returns false at the end of input. Together, the procedures constitute a simple
recursive-descent parser.
The procedures in Figure 2 do most of their job via side-effects of if statements, what is normally

not considered the best programming practice. However, here it results in a very concise code that
closely corresponds to the grammar. Notice that subexpressions of the form e? and e∗ can be inlined
as unconditional calls and while statements. All this can be produced by a relatively simple parser
generator.
In the following, a recursive-descent parser obtained by a similar transcription of PEG into executable

procedures is referred to as a ”PEG parser”.
As explained in [19], the common methods init(), accept(), etc. can be modified to provide some

memoization. They can be further extended to assist keeping of semantic information in call objects. All
this can be done behind the scenes, with only minimal changes to the code shown in Figure 2.
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3 What is actually defined by PEG?

The construction of parser in Figure 2 is quite appealing: no need to factor out digits from real and
integer, as little backtracking will do the job. A quick step from the grammar to the parser, and no
separate lexer to write (provided one has a ready package with common methods). The parser will
always terminate; as shown in [8], this is guaranteed if the grammar does not contain left recursion and
the expressions under ∗ and + always consume some input. One can easily see which strings are accepted
(in the sense of sum() returning true).
But, this latter is not always so easy. PEG may look like EBNF, but its meaning is quite different. For

an illustration, consider the definitions ("a"|"aa")"a" and ("aa"|"a")"a" in EBNF. They both specify
the language {aa, aaa}. However, the parsing expression ("a"/"aa")"a" does not accept aaa: "a"/"aa"
consumes the first a, letting the final "a" consume the second, and leaving out the third a. No attempt
is ever made to go back and let "a"/"aa" try the second alternative. The expression ("aa"/"a")"a"

does not accept aa: "aa"/"a" accepts all of aa, leaving nothing for the final "a". Again, the second
alternative of "aa"/"a" is not tried.
An example that really defies intuition is the recursive expression A = "a"A"a"/"aa". When applied

to a string of eight a’s, it consumes the entire string; when applied to a string of nine a’s, it consumes
only the first two. In general, the number A(n) of a’s consumed by A when applied to a string of n a’s
can be obtained by starting with A(2) = 2 and computing

A(n) =

{
A(n− 1) + 2 if A(n− 1) + 2 ≤ n ,

2 otherwise,

for n = 3, 4, etc.. One can verify that A(n) = n, that is, A consumes the whole string, if and only if n is
a power of 2.2

If one wants to define a language using PEG, one must be able to see what is actually being defined.
The effects of ordered choice and limited backtracking, such as illustrated above, may be hidden by many
levels of rules. In [21], Schmitz suggested how one can detect the situations exemplified by "a"/"aa".
This corresponds, in his own words, to detection of dead code. The example of ("aa"/"a")"a" shows
that the reverse, "a"/"aa", is also suspect. However, this situation is more subtle; it can still be safe and
useful, as in the case of number in Figure 2.
We shall try another approach: finding the language accepted by a given expression. But, we must first

decide what do we mean by it. In [8], Ford defines the language accepted by an expression as the set of
all inputs on which the expression succeeds – without necessarily consuming all of the input. That means
the language accepted by each of "aa"/"a" and "a"/"aa" consists of all strings starting with a, and the
language accepted by the expression A above of all strings starting with aa. This definition seems too
coarse if we want to define semantics; we need to know exactly the strings accepted by different elements
of the grammar.

In the following, we denote the input alphabet by Σ. For x, y ∈ Σ∗, we write x ≤ y to mean that x is
a prefix of y. For X ⊆ Σ∗, Pref(X) denotes the set of all prefixes of x ∈ X. The empty word is denoted
by ε.
For a parsing expression e and w ∈ Σ∗, we write c (e, w) = x to mean that e succeeds on input w and

consumes x. We write c (e, w) = φ to mean that e fails on w.
We consider two versions of a language accepted by expression e, ”large” and ”small”:

L(e) = {x ∈ Σ∗ | c (e, xy) = x for some y ∈ Σ∗} ,
S(e) = {x ∈ Σ∗ | c (e, xy) = x for all y ∈ Σ∗} .

One can easily see that S(e) ⊆ L(e).3 We note that the equality S(e) = L(e) indicates a reliable behavior
of e, independent of the text far ahead.

2This example appears as exercise 4.13 in [1] and in a number of earlier publications, originating with Theorem 6.2 in [3].
3The language L seems to be the same as L in Section 4 of [21].
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Lemma 1. For any parsing expression e and x, y ∈ Σ∗ holds:

(1) c (e, x) ̸= φ ⇒ x ∈ L(e)Σ∗ ,
(2) c (e, xy) ̸= φ ⇒ x ∈ L(e)Σ∗ ∪ Pref(L(e)) ,
(3) x ∈ S(e)Σ∗ ⇒ c (e, xy) ̸= φ .

Proof. Let e be any parsing expression.
(1) Consider any x such that c (e, x) ̸= φ, that is, c (e, x) = u where x = uv for some v ∈ Σ∗. By
definition, u ∈ L(e), so x ∈ L(e)Σ∗.
(2) Consider any x, y such that c (e, xy) ̸= φ. According to (1), this implies xy ∈ L(e)Σ∗. That means
xy = uv where u ∈ L(e) and v ∈ Σ∗. By Levi’s lemma, exists t ∈ Σ∗ such that either (a) x = ut and
v = ty, or (b) u = xt and y = tv. In case (a) we have x ∈ L(e)Σ∗, so xy ∈ L(e)Σ∗Σ∗ = L(e)Σ∗. In case
(b) we have xt ∈ L(e), that is, x ∈ Pref(L(e)).
(3) Consider any x ∈ S(e)Σ∗, that is, x = uv for some u ∈ S(e) and v ∈ Σ∗. By definition, u ∈ S(e)
means c (e, uvy) = u for all v and y. Thus, c (e, xy) ̸= φ.

One can easily see that for each of the expressions [ s ], [ c1- c2 ], "s", and , the languages S(e) and
L(e) are identical, and consist of the characters, or the string, defined by the expression. We proceed
now to languages defined by other expressions.

Proposition 1. For any expressions e1, e2 holds

S(e1) ∪ (S(e2)− L(e1)Σ∗ − Pref(L(e1))) ⊆ S(e1/e2)
⊆ L(e1/e2) ⊆ L(e1) ∪ (L(e2)− S(e1)Σ∗) .

Proof. Consider any x ∈ S(e1) ∪ (S(e2) − L(e1)Σ∗ − Pref(L(e1))) and y ∈ Σ∗. Apply e1/e2 to xy. If
x ∈ S(e1), e1 succeeds and consumes x.
If x ∈ S(e2)− L(e1)Σ∗ − Pref(L(e1)) we have, from Lemma 1 (2), c (e1, xy) = φ, that is, e1 fails and e2
is applied. As x ∈ S(e2), e2 succeeds and consumes x.
In each case, e1/e2 applied to xy for arbitrary y succeeds and consumes x. This shows that x ∈ S(e1/e2)
and proves the first inclusion.
The second inclusion follows from definitions.
Consider now any x ∈ L(e1/e2) That means c (e1/e2, xy) = x for some y ∈ Σ∗. Either c (e1, xy) = x, or
c (e1, xy) = φ and c (e2, xy) = x. Clearly, x ∈ L(e1) in the first case, and x ∈ L(e2) in the second. But
c (e1, xy) = φ in the second case means, according to Lemma 1 (3), that x /∈ S(e1)Σ∗. This proves the
third inclusion.

Proposition 2. For any expressions e1, e2 holds

S(e1)S(e2) ⊆ S(e1e2) ⊆ L(e1e2) ⊆ L(e1)L(e2) .

Proof. Consider any x ∈ S(e1)S(e2) and y ∈ Σ∗. We have x = uv where u ∈ S(e1) and v ∈ S(e2). Apply
e1e2 to xy. As u ∈ S(e1), e1 applied to uvy succeeds and consumes u, after which e2 is applied to vy. As
v ∈ S(e2), e2 applied to vy succeeds and consumes v. Thus, e1e2 applied to xy for arbitrary y succeeds
and consumes uv = x. This shows that x ∈ S(e1e2) and proves the first inclusion. The second inclusion
follows from definitions.
Consider now any x ∈ L(e1e2). That means e1 and e2 applied one after another to some w ∈ Σ∗ consume,
respectively, u and v such that uv = x. We have, clearly, u ∈ L(e1) and v ∈ L(e2), so x ∈ L(e1)L(e2).
This proves the third inclusion.

Proposition 3. For any expression e holds

∅ ⊆ S(&e) ⊆ L(&e) ⊆ {ε} ,
∅ ⊆ S(!e) ⊆ L(!e) ⊆ {ε} .

Proof. The predicates either consume ε or fail.
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Proposition 4. For any expression e holds

S(e) ⊆ S(e?) ⊆ L(e?) ⊆ L(e) ∪ {ε} .

Proof. Consider any x ∈ S(e) and any y ∈ Σ∗. Apply e to xy. As x ∈ S(e), e succeeds and consumes x,
meaning e? succeeds and consumes x, so x ∈ S(e?). This proves the first inclusion. The second inclusion
follows from definitions.
Consider now any x ∈ L(e?). It is either in L(e) (if e succeeds and consumes x on some input) or ε (if e
fails on some input). This proves the third inclusion.

Proposition 5. For any expression e holds

(S(e))∗ ⊆ L(e∗) ⊆ (L(e))∗ .

Proof. Consider any x ∈ (S(e))∗. If x = ε, it is in L(e∗). Otherwise x = u1u2 . . . un where n ≥ 1
and ui ∈ S(e) for 1 ≤ i ≤ n. Apply e to u1u2 . . . un. As u1 ∈ S(e), e succeeds and consumes u1; e
is then applied to u2 . . . un. As u2 ∈ S(e), e succeeds and consumes u2, until the n-th application of e
consumes un. Thus x ∈ L(e∗) also in this case. This proves the first inclusion.
(Note that this can not be applied to xy for any y: if y starts with any string in S(e), e∗ will continue
and consume more than x. We cannot conclude that (S(e))∗ ⊆ S(e∗).)
Consider now any x ∈ L(e∗). If x = ε, it is in L(e∗). Otherwise, e applied n ≥ 1 times to some string
w consumes x. The i-th application for 1 ≤ i ≤ n consumes ui ∈ L(e), Clearly x = u1u2 . . . un ⊆ L(e∗).
This proves the second inclusion.

The result stated by Proposition 3 is not very useful for finding the effect of predicates. Combined
with Proposition 2, it does not give much information about constructions such as &e1e2 or e1&e2. The
reason is that S(e) and L(e) do not depend on the input ahead. One can obtain better estimates by
considering a predicate together with expression that follows.

Proposition 6. For any expressions e1, e2 holds

S(e2) ∩ S(e1)Σ∗ ⊆ S(& e1e2) ⊆ L(& e1e2) ⊆ L(e2) ∩ (L(e1)Σ∗ ∪ Pref(L(e1))) .

Proof. Consider any x ∈ S(e2) ∩ S(e1)Σ∗ and y ∈ Σ∗. Apply & e1e2 to xy. As x ∈ S(e1)Σ∗, we have
xy ∈ S(e1)Σ∗Σ∗ = S(e1)Σ∗. From xy ∈ S(e1)Σ∗ follows, by Lemma 1(3), that e1 succeeds on xy, so e2
is applied to xy. As x ∈ S(e2), e2 succeeds and consumes x. Thus, & e1e2 applied to xy for arbitrary y
succeeds and consumes x. This proves the first inclusion. The second inclusion follows from definitions.
Consider now any x ∈ L(& e1e2). That means e2 and e1 applied to the same w ∈ Σ∗ both succeed and
consume, respectively, x and some u. We have thus x ∈ L(e2) and u ∈ L(e1). Both x and u are prefixes
of w. We have either x ∈ uΣ∗ or x ∈ Pref(u), meaning respectively, that x ∈ L(e1)Σ∗ or x ∈ Pref(L(e1)).
Hence, x ∈ L(e2) ∩ (L(e1)Σ∗ ∪ Pref(L(e1))). This proves the third inclusion.

Proposition 7. For any expressions e1, e2 holds

S(e2)− (L(e1)Σ∗ ∪ Pref(L(e1))) ⊆ S(! e1e2) ⊆ L(! e1e2) ⊆ L(e2)− S(e1)Σ∗ .

Proof. Consider any x ∈ S(e2) − (L(e1)Σ∗ ∪ Pref(L(e1))) and y ∈ Σ∗. Apply ! e1e2 to xy. From
x /∈ (e1)Σ

∗ ∪ Pref(L(e1)) follows, by Lemma 1 (2), that e1 fails on xy, so e2 is applied to xy. As
x ∈ S(e2), e2 succeeds and consumes x. Thus, ! e1e2 applied to xy for arbitrary y succeeds and consumes
x. This proves the first inclusion. The second inclusion follows from definitions.
Consider now any x ∈ L(! e1e2). That means e2 applied to some w ∈ Σ∗ consumes its prefix x, so
x ∈ L(e2). But this happens only after e1 failed when applied to the same w. We have then, by
Lemma 1 (3), w /∈ S(e1)Σ∗. Suppose x ∈ S(e1)Σ∗. But w = xu for some u ∈ Σ∗, which would mean
w ∈ S(e1)Σ∗. Hence, x /∈ S(e1)Σ∗. This proves the third inclusion.
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Including the expression ahead improves other results as well.

Proposition 8. For any expression e1, e2, e3 holds

S(e1)S(e3) ∪ (S(e2)S(e3)− L(e1)Σ∗ − Pref(L(e1))) ⊆ S((e1/e2) e3)
⊆ L((e1/e2) e3) ⊆ L(e1)L(e3) ∪ (L(e2)L(e3)− S(e1)Σ∗) .

Proof. Consider any x ∈ S(e1)S(e3) ∪ (S(e2)S(e3) − L(e1)Σ∗ − Pref(L(e1))). and any y ∈ Σ∗. Apply
(e1/e2) e3 to xy. Two cases are possible:

(a) x ∈ S(e1)S(e3). From Proposition 1 follows S(e1) ⊆ S(e1/e2), and from Proposition 2 follows
S(e1/e2)S(e3) ⊆ S((e1/e2) e3), so x ∈ S((e1/e2) e3).
(b) x ∈ S(e2)S(e3) − L(e1)Σ∗ − Pref(L(e1)). Take any y ∈ Σ∗ and apply (e1/e2) e3 to xy. From
x /∈ L(e1)Σ∗ ∪ Pref(L(e1)) follows, by Lemma 1 (2), that e1 fails when applied to xy, so e2 is applied.
We have x = uv where u ∈ S(e2) and v ∈ S(e3). That means c (e2, uvy) = u and c (e3, vy) = v. Thus,
(e1/e2) e3 applied to xy for arbitrary y consumes x.

This proves the first inclusion. The second inclusion follows from definitions.
Consider now any x ∈ L((e1/e2) e3). That means c ((e1/e2) e3, xy) = x for some y. Two cases are
possible:

(a) c (e1, xy) = u for some u, where x = uv for some v, and c (e3, vy) = v. We have u ∈ L(e1), v ∈ L(e3)
so x ∈ L(e1)L(e3).
(b) c (e1, xy) = φ, c (e2, xy) = u for some u, where x = uv for some v, and c (e3, vy) = v. We have
u ∈ L(e2), v ∈ L(e3) so x ∈ L(e2)L(e3). But, according to Lemma 1 (3), we have then also x /∈ S(e1)Σ∗.

This proves the third inclusion.

Note that Proposition 8 gives an exact result S(e) = L(e) = {aaa} for e = ("aa"/"a")"a", while
Proposition 1 combined with Proposition 2 gives only the estimate {aaa} ⊆ S(e) ⊆ L(e) ⊆ {aa, aaa}.
Unfortunately, no similar results seem possible for expressions of the form e1&e2 and e1!e2.

The last three Propositions show that we do not always get the best results by just combining those for
subexpressions operation by operation. They may be improved by considering more complex structures
as a whole. But how far one needs to go? Finding the languages for recursive expressions is still another
story. As the inclusions in Proposition 1 involve both L and S, we would have to solve systems of
”equations” (or rather ”inequalities”) in two ”unknowns”. All of it seems rather hopeless.

To close this section, let us look at the relation of L and S to two other possible ”languages of e”:

F(e) = {x ∈ Σ∗ | c (e, x) ̸= φ} (the language of e according to Ford [8]) ,

C(e) = {x ∈ Σ∗ | c (e, x) = x} (the input strings completely consumed by e) .

One can easily see that S ⊆ C ⊆ L. For the expression A discussed earlier, we have S(A) = ∅, C(A) =
{a2n |n ≥ 1}, and L(A) = {a2n |n ≥ 1}, showing that both inclusions may be proper. One can also easily
see that S(e)Σ∗ ⊆ F(e) ⊆ L(e)Σ∗, and that both inclusions may be proper. Finally, for an expression
e! , required to consume all of its input, we have:

∅ = S(e! ) ⊆ F(e! ) = C(e) = L(e! ) .

7



4 Backtracking in a PEG parser for C

In an earlier paper [19], the author reported an experiment to measure the effects of backtracking in a
PEG parser for Java 1.5. The experiment consisted of expressing the Java syntax in PEG formalism,
transcribing it into a parser (accidentally, also in Java), applying it to a large number of source files,
and collecting various statistics. The parsing time was found to be linear over a large range of file sizes.
The number of procedure calls repeated at the same position because of backtracking was only 16% of
all procedure calls. A very mild memoization (remembering the results of two most recent calls to each
procedure) reduced the number of such redundant calls to about 1%.
This successful experiment raised a question whether the same would apply to other programming

languages. To find this out, the author performed another experiment, with a PEG parser for C. The
syntax used was that defined by the International Standard ISO/IEC 9899:TC2, Annex A, with left
recursion replaced by iteration. The preprocessing facilities defined under A.3 were not included, so the
experiment was carried out on preprocessed files. The available source files contained some features not
specified by the standard, namely function specifier stdcall, type qualifier declspec(), and type
specifier attribute (). They had to be added to the syntax.
A problem with parsing C is its typedef declaration that dynamically introduces new keywords.

Recognizing these keywords is essential for parsing. What makes the things worse is that identifiers
defined by typedef do not become fully reserved, and may be, in some contexts, used as ordinary names.
In order to handle typedef, it was necessary to introduce some semantic processing into the parser.
In the absence of any other method to verify the PEG definition, the resulting parser was applied to a

number of source files and problems fixed until all files were accepted. The encountered problems were
mostly the same as reported in [19].

file size kB calls calls/byte

1 0.3 15 600 59.3
2 0.5 18 334 38.6
3 0.8 32 171 41.5
4 1.7 58 485 33.2
5 2.7 144 165 53.1
6 5.4 271 817 49.4
7 8.6 519 303 58.8
8 15.1 1 016 279 65.5
9 26.7 1 195 305 43.8

10 46.1 2 716 447 57.6
11 81.8 4 586 314 54.8
12 141.9 9 317 937 64.1

30 35 40 45 50 55 60 65 70 75 >75
0

10

20

30

40

number of files

calls/byte

Fig.3.

To measure the effects of backtracking, the parser was applied to 100 preprocessed files with sizes from
0.3 to 265 kB, taken from [9, 10, 14, 17]. The processing time was estimated by counting calls to parsing
procedures. This measure was used instead of the clock time because it is repeatable and independent
of the environment. The number of calls divided by file size was used to asses the dependence between
file size and processing time. Figure 3 shows the values obtained for twelve selected files. The values of
calls/byte for all 100 files varied between 32.2 and 215.5, with 49.4 as the median. Their distribution is
shown by the histogram in Figure 3. As one can see, there is no apparent correlation with file size – a
reasonable approximation to linear time. (The actual correlation factor for all 100 files was 0.21.)
The number of redundant calls (a procedure called again at the same input position) was 68.5% of all

calls. The experiment was subsequently repeated with memoization of one, and then two, most recent
results of each procedure. Figure 4 shows the effect of memoization on the number of redundant calls.
(The numbers are totals for all 100 files.)
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memo calls redundant %

0 265 008 314 181 497 529 68.5
1 125 891 830 42 381 045 33.7
2 106 634 119 23 123 334 21.7
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Fig.4.

These results are less optimistic than those obtained for Java. The parsing ”time” is still linear in file
size, but is much higher, and redundant calls are not eliminated by memoization. One way to explain
this difference was that Java experiment used a simplified grammar from Chapter 18 of Java Language
Specification [11]. As stated there, the grammar ”in many cases minimizes the necessary look ahead”.
To see how much such simplifications matter, the C experiment was repeated with a slightly modified

grammar. The modification consisted of reversing the order of FunctionDefinition and Declaration in the
rule for ExternalDeclaration, and relaxing the syntax of left-hand side of AssignmentExpression. Figures
5 and 6 show the results obtained with the modified syntax. They are very close to those for Java in [19].
The values of calls/byte ranged from 17.5 to 71.8, with 24.1 as the median. The correlation with file size
was 0.03, and redundant calls were practically eliminated by memoizing the two most recent results.

file size kB calls calls/byte

1 0.3 9 663 36.7
2 0.5 11 207 23.6
3 0.8 17 438 22.5
4 1.7 31 072 17.6
5 2.7 72 639 26.8
6 5.4 130 426 23.7
7 8.6 239 709 27.1
8 15.1 415 030 26.8
9 26.7 575 391 21.1

10 46.1 1 013 214 21.5
11 81.8 2 023 736 24.2
12 141.9 4 073 702 28.0

10 15 20 25 30 35 40 45 50 >50
0

10

20

30

40

number of files
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Fig.5.
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memo calls redundant %

0 103 150 973 23 899 850 23.2
1 81 465 462 2 214 339 2.7
2 80 333 011 1 081 888 1.3
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Fig.6.

5 Summary

In Section 3, we tried to find out the language that is actually defined by a given parsing expression. We
used two different definitions of such language, but were at best able to obtain some estimates. The results
are complicated, and involve operations that may be computationally impossible, such as obtaining prefix
set of a language, or intersection of two languages.
It follows that PEG is not good as a language specification tool. The most basic property of a specifica-

tion is that one can clearly see what it specifies. And this is, unfortunately, not true for PEG. On the other
hand, PEG is useful as a parser. Instead of trying to find the meaning of given parsing expressions, one
should ask how to construct a correct, comprehensible, and efficient PEG parser for a language specified
in a traditional way. It has been shown (Theorem 6.1 in [2], Theorem 3.1 in [3]) that each deterministic
context-free language can be defined in TDPL, and thus in PEG. However, the construction shown there
is via a push-down automaton, and does not seem likely to result in a readable grammar. On the other
hand, the Java and C grammars constructed ad-hoc for the experiments described in Section 4 are very
close to the EBNF grammars used in the specifications. Perhaps the right way is to identify a discipline
that would restrict the use of PEG to well-understood constructions. This is, after all, how we once saved
ourselves from the quagmire of ”spaghetti programming”. And one should remember that EBNF is not
ideal either.

In Section 4, we checked if the encouraging results obtained with a PEG parser for Java apply also to
C. The answer is yes, with a modification. For the C grammar taken directly from the ISO standard,
performance was worse than for Java, but not disastrous. The processing time was still linear in the
source size. The number of redundant calls due to backtracking was rather high, but dropped by more
than a half with memoizing of one latest result. However, it was still high with memoizing of two results.
The experiment was repeated with a slightly modified grammar. The results were then almost identical

to those for Java. Which is not surprising, as the Java grammar used in [19] was, in fact, optimized for
top-down processing.
One may note that the modification was rather simple, and did not affect readability of the grammar.

As much can be gained by such manipulations, the question is how to identify them? The ones made in
the experiment just followed a simple intuition. But, is it possible to do it in some systematic way, other
than running tests and collecting statistics?
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