
Cut points in PEG

Extended Abstract

Roman R. Redziejowski

roman.redz@swipnet.se

1 Introduction

This is a short note that combines some ideas and results from papers [2–5]. It
is about Parsing Expression Grammars (PEGs) introduced by Ford in [1]. PEG
specifies a language by defining for it a parser with limited backtracking. All
the quoted papers contain a detailed introduction to PEG, so it is not repeated
here.

Thanks to the backtracking being limited, one can use the so-called ”packrat”
technology to run the PEG parser in a linear time, at the cost of large memory
consumption. Mizushima et al. [3] noted that by introducing a ”cut point” one
can greatly reduce the memory requirement. The point, indicated by ↑, is inserted
in a choice expression e1e2/e like this: e1 ↑e2 / e. It means that once e1 succeeded
on some input, e cannot possibly succeed on the same input, so there is no need
to backtrack and try e if e2 fails. Thus, once ↑ is passed, there is no need to store
the information needed for backtracking.

The method of inserting ↑ described in [3] applies to grammars with LL(1)
property. These are the languages where a top-down parser can choose the correct
action by looking one character ahead. In [4,5], this author considered grammars
where a backtracking parser can make its choice by examining the input within
the reach of k parsing procedures. This property was called LL(kP). We are
going to discuss the insertion of cut markers in such grammars.

In Section 5 of a recent paper [2], Maidl et al. introduced an elegant extension
to PEG for reporting syntax failures. One of its main features is to optionally
prevent backtracking after a failure - exactly the function of a cut point. We are
going to give an example of its usage.

2 Cut points in PEG

Consider this grammar:

S = E $
E = T+E / T
T = a / b

To choose the correct alternative for E, the parser must call two procedures: that
for T and that for +. So the grammar is LL(2P).



2 R. R. Redziejowski

Suppose that at some point during the parse of S, expression E is applied to
input w. It starts by calling T. Clearly, if T fails, w does not start with a or b,
so the second alternative, being the same T, must also fail. Suppose now that
T+ succeeds, after which E fails. One can easily see that the only thing that
can follow E in the parse of S is $. Thus, applying the second alternative to w
will result in a successful parse only if w = a$ or w = b$. But T+ succeeding on
w means that w is none of these. So, trying the second alternative will not result
in a successful parse. We have identified here two cut points, ↓ and ↑, meaning
”do not backtrack if you fail before ↓ or after ↑”:

E = T↓+↑E / T

In order to find out where to insert the cut points, we consider a grammar
as used in [4, 5], with the starting symbol S and end-of-input marker $. As in
these papers, we denote by L(e) the language defined by expression e when
interpreted as BNF, and by Tail(e) the set of all terminated strings that can
follow an application of e in a parse starting with S. We assume further that
each choice expression A = e1/e2 satisfies the condition

L(e1)Σ∗ ∩ L(e2)Tail(A) = ∅. (1)

As shown in [4], every parsing expression e accepts then the language L(e). One
can show that if e fails on input w, we have w /∈ L(e)Σ∗. For convenience, we
consider choice expressions of the form e1e2/e that can be easily desugared to
the primitive form used in [4, 5].

Proposition 1. The sufficient condition for ↓ after e1 in A = e1e2/e is:

L(e1)Σ∗ ⊇ L(e)Tail(A). (2)

Proof. Suppose the parsing expression e1 fails on input w. We have then
w /∈ L(e1)Σ∗. Suppose that e succeeds when applied to w. We would have
then w ∈ L(e)Tail(A), which contradicts (2). ⊓⊔

Proposition 2. The sufficient condition for ↑ after e1 in A = e1e2/e is:

L(e1)Σ∗ ∩ L(e)Tail(A) = ∅. (3)

Proof. Suppose e1 succeeds on input w and then e2 fails on what was left by e1.
From e1 succeeding follows w ∈ L(e1)Σ∗. Suppose that e succeeds when applied
to w. We would have then w ∈ L(e)Tail(A), which contradicts (3). ⊓⊔

(The above proofs can be fully formalized with the ”natural semantics” def-
initions of BNF and PEG given in [4, 5].)



Cut points in PEG 3

3 Labeled failures

In the standard version of PEG, a failing expression returns just an indication
that it failed. In the modification suggested in Section 5 of [2], failing expression
returns a label which may conveniently be a complete error message. One dis-
tinguished such label is just ”fail”. A failing terminal returns ”fail” by default.
Other labels are created by the new expression ⇑l which forces an immediate
failure with label l. The meaning of choice e1/e2 is redefined so that if e1 fails
with label other than ”fail”, the whole expression fails immediately with that
label without trying e2. If e1 fails with label ”fail”, e2 is tried in the normal
way and the expression terminates with the result of e2. (This is a simplified
description; in the full version, the choice may ”catch” other labels than ”fail”.)

The cut points from our example may be encoded like this:

E = (T /⇑t) + (E /⇑e) / T

where t may be the message ”Term expected” and e the message ”Expres-
sion expected”. If the input does not start with a or b, the first T ends with
”fail” and (T /⇑t) proceeds to its second alternative, which forces its termina-
tion with label ”Term expected”. The sequence (T /⇑t) + (E /⇑e) terminates
with this label, so the alternative T is not attempted and the whole expression
ends with ”Term expected”. If the first T succeeds and + fails, the sequence
(T /⇑t) + (E /⇑e) terminates with label ”fail” and the alternative T is tried. If
the first T and + succeed, and the following E fails, the sequence
(T /⇑t) + (E /⇑e) terminates with ”Expression expected” so the alternative
T is not tried.

4 Problems

The above example shows that, in addition to saving memory and unnecessary
processing, the proper placement of cut points can result in meaningful diagnos-
tics. However, the languages appearing in (2) and (3) are, in general, context-free
languages. The inclusion and emptiness of intersection of such languages are, in
general, undecidable, meaning there is no general algorithm to check (2) and (3).
One may reduce the ambition to special cases or use approximations.

The solution suggested in [3] approximates the languages appearing in (3)
by their first letters (more precisely, first terminals): the condition is satisfied if
words in L(e1) do not start with the same letters as words in L(e)Tail(A). This
can be checked in a fully mechanical way, but is restricted to LL(1) grammars.
One can use instead approximations by initial nonterminals as suggested in [4,5],
but here one can again run into undecidable situations.

We note that as the result of checking (1) by approximations in [4, 5], one
finds e1 satisfying (3), which thus produces a cut point ↑ as a by-product. It
seems possible to use similar approximation method for identifying the ↓ cut
point.



4 R. R. Redziejowski

References

1. Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation.
In: Jones, N.D., Leroy, X. (eds.) Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004. pp. 111–122.
ACM, Venice, Italy (14–16 January 2004)

2. Maidl, A.M., Medeiros, S., Mascarenhas, F., Ierusalimschy, R.: Error reporting in
Parsing Expression Grammars. Tech. rep., PUC-Rio, UFRJ Rio de Janeiro, UFRN
Natal, Brazil (2014), http://arxiv.org/pdf/1405.6646v1.pdf

3. Mizushima, K., Maeda, A., Yamaguchi, Y.: Packrat parsers can handle practical
grammars in mostly constant space. In: Lerner, S., Rountev, A. (eds.) Proceedings
of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, PASTE’10, Toronto, Ontario, Canada, June 5-6, 2010. pp.
29–36. ACM (2010)

4. Redziejowski, R.R.: From EBNF to PEG. Fundamenta Informaticae 128(1-2), 177–
191 (2013)

5. Redziejowski, R.R.: More about converting BNF to PEG. Fundamenta Informaticae
(2014), to appear, http://www.romanredz.se/papers/FI2014.pdf


