From EBNF to PEG

Roman R. Redziejowski

Concurrency, Specification and Programming
Berlin 2012
A way to define grammar.
A way to define grammar.

\[
\text{Literal} \quad = \quad \text{Decimal} \quad | \quad \text{Binary} \\
\text{Decimal} \quad = \quad [0-9]^+ \quad \text{"."} \quad [0-9]^* \\
\text{Binary} \quad = \quad [01]^+ \quad \text{"B"}
\]
Recursive-descent parsing

Parsing procedure for each equation and each terminal.

\[
\begin{align*}
\text{Literal} & = \text{Decimal} \mid \text{Binary} \\
\text{Decimal} & = [0-9]^+ \cdot [0-9]^* \\
\text{Binary} & = [01]^+ \cdot \text{B}
\end{align*}
\]

Literal calls *Decimal* or *Binary*.

Decimal calls repeatedly [0-9], then ".", then repeatedly [0-9].

Binary calls repeatedly [01], then "B".
Recursive-descent parsing

Parsing procedure for each equation and each terminal.

\[
\begin{align*}
\text{Literal} & \quad = \quad \text{Decimal} \quad | \quad \text{Binary} \\
\text{Decimal} & \quad = \quad [0-9]^+ \quad '.' \quad [0-9]^* \\
\text{Binary} & \quad = \quad [01]^+ \quad 'B'
\end{align*}
\]

Literal calls Decimal or Binary.
Decimal calls repeatedly [0-9], then ".", then repeatedly [0-9].
Binary calls repeatedly [01], then "B".

Problem: Decimal and Binary may start with any number of 0’s and 1’s.
Literal cannot choose which procedure to call by looking at any fixed distance ahead.
Solution: Backtracking

\[
\text{Literal} = \text{Decimal} \mid \text{Binary}
\]

\[
\text{Decimal} = [0-9]^+ \text{"."} [0-9]^*
\]

\[
\text{Binary} = [01]^+ \text{"B"}
\]

\[
101B
\]

\^
Solution: Backtracking

\[
\begin{align*}
\text{Literal} & \quad = \quad \text{Decimal} \; | \; \text{Binary} \\
\text{Decimal} & \quad = \quad [0-9]^+ \; . \; [0-9]^* \\
\text{Binary} & \quad = \quad [01]^+ \; \text{"B"} \\
\end{align*}
\]

\[
101\text{B}^\wedge
\]

\[
\text{Literal}
\]
Solution: Backtracking

\[
\text{Literal} = \text{Decimal} \mid \text{Binary}
\]

\[
\text{Decimal} = [0-9]^+ \ . \ [0-9]^*
\]

\[
\text{Binary} = [01]^+ \ "B"
\]

101B
^

\text{Literal} \rightarrow \text{Decimal}
Solution: Backtracking

\[
\begin{align*}
\text{Literal} & \quad = \quad \text{Decimal} \quad | \quad \text{Binary} \\
\text{Decimal} & \quad = \quad [0-9]^+ \quad "." \quad [0-9]^* \\
\text{Binary} & \quad = \quad [01]^+ \quad \text{"B"} \\
\end{align*}
\]

101B
\^ \\

\[
\text{Literal} \rightarrow \text{Decimal} \rightarrow [0-9]
\]
Solution: Backtracking

\[
\begin{align*}
\text{Literal} & = \text{Decimal} \mid \text{Binary} \\
\text{Decimal} & = [0-9]^+ \, .\, [0-9]^* \\
\text{Binary} & = [01]^+ \, \text{"B"} \\
\end{align*}
\]

\[101\text{B}\]

\[
\text{Literal} \rightarrow \text{Decimal} \rightarrow [0-9] : \text{advance 3 times}
\]
Solution: Backtracking

\[
\begin{align*}
\text{Literal} & \ = \ \text{Decimal} \mid \text{Binary} \\
\text{Decimal} & \ = \ [0-9]^+ \ . \ [0-9]^* \\
\text{Binary} & \ = \ [01]^+ \ \text{"B"}
\end{align*}
\]

\[
101\text{B}
\]

\[
\uparrow
\]

\[
\text{Literal} \rightarrow \text{Decimal} \rightarrow \text{"."}
\]
Solution: Backtracking

\[
\begin{align*}
\text{Literal} & = \text{Decimal} \mid \text{Binary} \\
\text{Decimal} & = [0-9]^+ \cdot [0-9]^* \\
\text{Binary} & = [01]^+ \cdot \text{"B"}
\end{align*}
\]

\[101\text{\texttt{B}}\]

\[
\text{Literal} \rightarrow \text{Decimal} \rightarrow \cdot \text{: fail, backtrack}
\]
Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]*

Binary = [01]+ "B"

101B

^
Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]*

Binary = [01]+ "B"

101B

^
Solution: Backtracking

\[
\text{Literal} = \text{Decimal} \mid \text{Binary}
\]

\[
\text{Decimal} = [0-9]^+ \cdot [0-9]^*
\]

\[
\text{Binary} = [01]^+ \cdot \text{"B"}
\]

\[
101\text{B}
\]

\[
\wedge
\]

\[
\text{Literal} \rightarrow \text{Binary} \rightarrow [01]
\]
Solution: Backtracking

\[
\begin{align*}
 \text{Literal} &\quad = \quad \text{Decimal} \mid \text{Binary} \\
 \text{Decimal} &\quad = \quad [0-9]^+ \".\" [0-9]^\ast \\
 \text{Binary} &\quad = \quad [01]^+ \"B\"
\end{align*}
\]

\[
101B
\]

\[
\wedge
\]

Literal → Binary → [01] : advance 3 times
Solution: Backtracking

Literal = Decimal | Binary

Decimal = [0-9]+ "." [0-9]*

Binary = [01]+ "B"

101B

Literal → Binary → "B"
Solution: Backtracking

\[
\begin{align*}
\text{Literal} & = \text{Decimal} \mid \text{Binary} \\
\text{Decimal} & = [0-9]^+ \cdot [0-9]^* \\
\text{Binary} & = [01]^+ \ "B"
\end{align*}
\]

\[101B\]

\[\wedge\]

\text{Literal} \rightarrow \text{Binary} \rightarrow "B" : advance, return
Literal = Decimal | Binary

Decimal = [0-9]⁺ "." [0-9]*

Binary = [01]⁺ "B"
Limited backtracking

Backtracking solves the problem, but may take exponential time.
Backtracking solves the problem, but may take exponential time.

Solution: limited backtracking. Never go back after one alternative succeeded.
Limited backtracking

Backtracking solves the problem, but may take exponential time.

Solution: limited backtracking. Never go back after one alternative succeeded.

- 1961 Brooker & Morris - Altas Compiler Compiler
- 1965 McClure - TransMoGrifier (TMG)
- 1972 Aho & Ullman - Top-Down Parsing Language (TDPL)
- ...
- 2004 Ford - Parsing Expression Grammar (PEG)
Limited backtracking

Backtracking solves the problem, but may take exponential time.

Solution: limited backtracking. Never go back after one alternative succeeded.

- 1961 Brooker & Morris - Altas Compiler Compiler
- 1965 McClure - TransMoGrifier (TMG)
- 1972 Aho & Ullman - Top-Down Parsing Language (TDPL)
- ...
- 2004 Ford - Parsing Expression Grammar (PEG)

It can work in linear time.
Looks exactly like EBNF:

\[
\begin{align*}
\text{Literal} &= \text{Decimal} / \text{Binary} \\
\text{Decimal} &= [0-9]^+ \cdot [0-9]^* \\
\text{Binary} &= [01]^+ \text{"B"}
\end{align*}
\]
Looks exactly like EBNF:

\[
\text{Literal} \quad = \quad \text{Decimal} \quad / \quad \text{Binary} \\
\text{Decimal} \quad = \quad [0-9]^+ \quad \text{"."} \quad [0-9]^* \\
\text{Binary} \quad = \quad [01]^+ \quad \text{"B"}
\]

Specification of a recursive-descent parser with limited backtracking, where "/" means an ordered no-return choice.
PEG is not EBNF

<table>
<thead>
<tr>
<th>EBNF:</th>
<th>PEG:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = ("a" / "aa") "b") {ab, aab}</td>
<td>{ab}</td>
</tr>
<tr>
<td>(A = ("aa" / "a") "ab") {aaab, aab}</td>
<td>{aaab}</td>
</tr>
<tr>
<td>(A = ("a" / "b"?) "a") {aa, ba, a}</td>
<td>{aa, ba}</td>
</tr>
</tbody>
</table>
Backtracking may examine input far ahead so result may depend on context in front.
PEG is not EBNF

EBNF:

A = ("a" / "aa") "b" \{ab, aab\}
A = ("aa" / "a") "ab" \{aaab, aab\}
A = ("a" / "b"?) "a" \{aa, ba, a\}

PEG:

\{ab\}
\{aaab\}
\{aa, ba\}

Backtracking may examine input far ahead so result may depend on context in front.

A = "a" A "a" / "aa"
EBNF: \(a^{2n}\)
PEG: \(a^{2n}\)
In this case PEG = EBNF:

\[
\begin{align*}
\text{Literal} & = \text{Decimal} / \text{Binary} \\
\text{Decimal} & = [0-9]^+ \ "." \ [0-9]^* \\
\text{Binary} & = [01]^+ "B"
\end{align*}
\]
In this case PEG = EBNF:

\[
\begin{align*}
\text{Literal} & = \text{Decimal} / \text{Binary} \\
\text{Decimal} & = [0-9]^+ \cdot [0-9]^* \\
\text{Binary} & = [01]^+ \text{"B"}
\end{align*}
\]

When does it happen?
When PEG = EBNF?

Sérgio Queiroz de Medeiros

Correspondência entre PEGs e Classes de Gramáticas Livres de Contexto.

Ph.D. Thesis

When PEG = EBNF?

Sérgio Queiroz de Medeiros
Correspondência entre PEGs e Classes de Gramáticas Livres de Contexto.
Ph.D. Thesis

If EBNF has LL(1) property then PEG = EBNF
But this is not LL(1):

\[
\begin{align*}
\text{Literal} & = \text{Decimal} \ / \ \text{Binary} \\
\text{Decimal} & = [0-9]^+ \ "." \ [0-9]^* \\
\text{Binary} & = [01]^+ \ "B"
\end{align*}
\]
But this is not LL(1):

- **Literal** = Decimal / Binary
- **Decimal** = [0-9]+ "." [0-9]*
- **Binary** = [01]+ "B"

Which means PEG = EBNF for a wider class.
But this is not LL(1):

\[
\text{Literal} = \text{Decimal} / \text{Binary} \\
\text{Decimal} = [0-9]^+ "." [0-9]^* \\
\text{Binary} = [01]^+ "B"
\]

Which means PEG = EBNF for a wider class. Let us find more about it.
Simple grammar

Alphabet Σ (the "terminals").

Set N of names (the "nonterminals").

For each $A \in N$ one rule of the form:
- $A = e_1 \ e_2$ (Sequence) or
- $A = e_1 \mid e_2$ (Choice)

where $e_1, e_2 \in N \cup \Sigma \cup \{ \varepsilon \}$.

Start symbol $S \in A$.

"Syntax expressions": $\mathcal{E} = N \cup \Sigma \cup \{ \varepsilon \}$.
Simple grammar

Alphabet Σ (the "terminals").

Set N of names (the "nonterminals").

For each $A \in N$ one rule of the form:

- $A = e_1 \ e_2$ (Sequence) or
- $A = e_1 \ | \ e_2$ (Choice)

where $e_1, e_2 \in N \cup \Sigma \cup \{\varepsilon\}$.

Start symbol $S \in A$.

"Syntax expressions": $E = N \cup \Sigma \cup \{\varepsilon\}$.

Will consider two interpretations: EBNF and PEG.
\(\mathcal{L}(e) \) – language of expression \(e \in \mathbb{E} \).

- \(\mathcal{L}(\varepsilon) = \{\varepsilon\} \)
- \(\mathcal{L}(a) = \{a\} \) for \(a \in \Sigma \)
- \(\mathcal{L}(A) = \mathcal{L}(e_1)\mathcal{L}(e_2) \) for \(A = e_1 e_2 \)
- \(\mathcal{L}(A) = \mathcal{L}(e_1) \cup \mathcal{L}(e_2) \) for \(A = e_1 \mid e_2 \)

Language defined by the grammar: \(\mathcal{L}(S) \).
Relation $\leadsto \subseteq \mathbb{E} \times \Sigma^* \times \Sigma^*$, written $[e] \ x \leadsto y$.

$[e] \ xy \leadsto y$ means "xy has prefix $x \in \mathcal{L}(e)$".

Or: parsing procedure for e, applied to xy consumes x.

$w \in \mathcal{L}(S) \iff [S] \ w$ \leadsto $\$$

where $\$$ is "end of text" marker.
*[e] x ↑^{BNF} y holds if and only if it can be proved using these inference rules:

\[
\begin{align*}
\varepsilon x & \xrightarrow{BNF} x \quad \alpha x & \xrightarrow{BNF} x \\
A = e_1 e_2 & \quad [e_1] xyz & \xrightarrow{BNF} yz \quad [e_2] yz & \xrightarrow{BNF} z \\
& \quad [A] xyz & \xrightarrow{BNF} z \\
A = e_1 | e_2 & \quad [e_1] xy & \xrightarrow{BNF} y \\
& \quad [A] xy & \xrightarrow{BNF} y \\
A = e_1 | e_2 & \quad [e_2] xy & \xrightarrow{BNF} y \\
& \quad [A] xy & \xrightarrow{BNF} y
\end{align*}
\]
Example of proof

Grammar: $S = aX$, $X = S|b$

Proof of $aab \in \mathcal{L}(S)$

$$
\begin{array}{c}
\hline
[b] \ b$ \ BNF \ \rightsquigarrow \ \$

\hline
\end{array}

\begin{array}{c}
\hline
X = S|b \quad \begin{array}{c}
\hline
[b] \ b$ \ BNF \ \rightsquigarrow \ \$

\hline
\end{array}

\begin{array}{c}
\hline
[a] \ ab$ \ BNF \ \rightsquigarrow \ b$

\hline
\end{array}

\begin{array}{c}
\hline
[X] \ b$ \ BNF \ \rightsquigarrow \ $

\hline
\end{array}

\begin{array}{c}
\hline
S = aX \quad [a] \ ab$ \ BNF \ \rightsquigarrow \ b$ \quad [X] \ b$ \ BNF \ \rightsquigarrow \ $

\hline
\end{array}

\begin{array}{c}
\hline
[S] \ ab$ \ BNF \ \rightsquigarrow \ $

\hline
\end{array}

\begin{array}{c}
\hline
X = S|b \quad [S] \ ab$ \ BNF \ \rightsquigarrow \ $

\hline
\end{array}

\begin{array}{c}
\hline
[a] \ aab$ \ BNF \ \rightsquigarrow \ ab$

\hline
\end{array}

\begin{array}{c}
\hline
[X] \ ab$ \ BNF \ \rightsquigarrow \ $

\hline
\end{array}

\begin{array}{c}
\hline
S = aX \quad [a] \ aab$ \ BNF \ \rightsquigarrow \ ab$ \quad [X] \ ab$ \ BNF \ \rightsquigarrow \ $

\hline
\end{array}

\begin{array}{c}
\hline
[S] \ aab$ \ BNF \ \rightsquigarrow \ $

\hline
\end{array}

Roman R. Redziejowski
From EBNF to PEG
Elements of \mathcal{E} are parsing procedures that consume input or return "failure".

- ε returns success without consuming input.
- a consumes a if input starts with a. Otherwise returns failure.
- $A = e_1 e_2$ calls e_1 then e_2. If any of them failed, backtracks and returns failure.
- $A = e_1 | e_2$ calls e_1. If e_1 succeeded, returns success. If e_1 failed, calls e_2 and returns its result.
Relation $\overset{\text{PEG}}{\rightsquigarrow} \subseteq \mathbb{E} \times \Sigma^* \times (\Sigma^* \cup \text{fail})$, written $[e] \overset{\text{PEG}}{\rightsquigarrow} y$.

- $[e] \overset{\text{PEG}}{\rightsquigarrow} xy$ means "e consumes prefix x of xy".
- $[e] \overset{\text{PEG}}{\rightsquigarrow} x \text{fail}$ means "e applied to x returns failure".

w accepted by the grammar iff $[S] \overset{\text{PEG}}{\rightsquigarrow} w$.

Roman R. Redziejowski From EBNF to PEG
Natural semantics" (after Medeiros)

\[e \] \(\xrightarrow{\text{PEG}} \) \(Y \) holds if and only if
it can be proved using these inference rules:

- \(b \neq a \)
- \([\varepsilon] \) \(\xrightarrow{\text{PEG}} \) \(x \)
- \([a] \) \(ax \xrightarrow{\text{PEG}} \) \(x \)
- \([b] \) \(ax \xrightarrow{\text{PEG}} \) \(\text{fail} \)
- \([a] \) \(\varepsilon \xrightarrow{\text{PEG}} \) \(\text{fail} \)

\(A = e_1 e_2 \)
\([e_1] \) \(xyz \xrightarrow{\text{PEG}} \) \(yz \)
\([e_2] \) \(yz \xrightarrow{\text{PEG}} \) \(Z \)
\([A] \) \(xyz \xrightarrow{\text{PEG}} \) \(Z \)

\(A = e_1 e_2 \)
\([e_1] \) \(\xrightarrow{\text{PEG}} \) \(\text{fail} \)
\([A] \) \(\xrightarrow{\text{PEG}} \) \(\text{fail} \)

\(A = e_1 | e_2 \)
\([e_1] \) \(\xrightarrow{\text{PEG}} \) \(\text{fail} \)
\([e_2] \) \(xy \xrightarrow{\text{PEG}} \) \(y \)
\([A] \) \(xy \xrightarrow{\text{PEG}} \) \(y \)

\(A = e_1 | e_2 \)
\([e_1] \) \(\xrightarrow{\text{PEG}} \) \(\text{fail} \)
\([e_2] \) \(xy \xrightarrow{\text{PEG}} \) \(Y \)
\([A] \) \(xy \xrightarrow{\text{PEG}} \) \(Y \)

where \(Y \) is \(y \) or \(\text{fail} \) and \(Z \) is \(z \) or \(\text{fail} \).
By induction on the height of proof trees for $[S] \, w$\, PEG \Rightarrow and $[S] \, w$\, BNF \Rightarrow:

- $[S] \, w$\, PEG \Rightarrow \Rightarrow $[S] \, w$\, BNF \Rightarrow. (Medeiros)
By induction on the height of proof trees for
\([S] \ w^\text{PEG} \rightsquigarrow \)$ and \([S] \ w^\text{BNF} \rightsquigarrow \)$:

- \([S] \ w^\text{PEG} \rightsquigarrow \) ⇒ \([S] \ w^\text{BNF} \rightsquigarrow \). (Medeiros)
- \([S] \ w^\text{BNF} \rightsquigarrow \) ⇒ \([S] \ w^\text{PEG} \rightsquigarrow \)
 if for every Choice \(A = e_1 | e_2 \) holds
 \(\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset \).
When PEG = EBNF?

By induction on the height of proof trees for
\([S] \ x \ PEG \sim \ y \) and \([S] \ x \ BNF \sim \ y \):

- \([S] \ x \ PEG \sim \ y \) \implies \([S] \ x \ BNF \sim \ y \). (Medeiros)

- \([S] \ x \ BNF \sim \ y \) \implies \([S] \ x \ PEG \sim \ y \)

 if for every Choice \(A = e_1 | e_2\) holds

\[\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset.\]

(Tail(A) is any possible continuation after A:
\(y \in \text{Tail}(A)\) iff proof tree of \([S] \ x \ BNF \sim \ y \) for some \(x\)
contains partial result \([A] \ xy \ BNF \sim \ y \).)
Let us say that Choice $A = e_1 | e_2$ is "safe" to mean
$\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{ Tail}(A)) = \emptyset$.
Let us say that Choice $A = e_1 | e_2$ is "safe" to mean $\mathcal{L}(e_1) \cap \text{Pref} (\mathcal{L}(e_2) \text{ Tail}(A)) = \emptyset$.

The two interpretations are equivalent if every Choice in the grammar is safe.
$\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset$
\[\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset \]

Requires \(\varepsilon \notin \mathcal{L}(e_1) \).
\[\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset \]

Requires \(\varepsilon \notin \mathcal{L}(e_1) \).

Depends on context.
\[\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset \]

Requires \(\varepsilon \notin \mathcal{L}(e_1) \).

Depends on context.

Difficult to check: \(\mathcal{L}(e_1) \), \(\mathcal{L}(e_2) \), and \(\text{Tail}(A) \) can be any context-free languages.

Intersection of context-free languages is in general undecidable.
\[\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset \]

Requires \(\varepsilon \not\in \mathcal{L}(e_1) \).

Depends on context.

Difficult to check: \(\mathcal{L}(e_1) \), \(\mathcal{L}(e_2) \), and \(\text{Tail}(A) \) can be any context-free languages.

Intersection of context-free languages is in general undecidable.

Can be "approximated" by stronger conditions.
Consider $A = e_1|e_2$.

$\text{FIRST}(e_1), \text{FIRST}(e_2)$: sets of possible first letters of words in $\mathcal{L}(e_1)$ respectively $\mathcal{L}(e_2)$.
Consider $A = e_1|e_2$.

$\textsc{First}(e_1), \textsc{First}(e_2)$:
sets of possible first letters
of words in $\mathcal{L}(e_1)$ respectively $\mathcal{L}(e_2)$.

If $\mathcal{L}(e_1), \mathcal{L}(e_2)$, do not contain ε,
$\textsc{First}(e_1) \cap \textsc{First}(e_2) = \emptyset$
implies $\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset$.
Consider $A = e_1 | e_2$.

$\text{FIRST}(e_1), \text{FIRST}(e_2)$:
sets of possible first letters
of words in $\mathcal{L}(e_1)$ respectively $\mathcal{L}(e_2)$.

If $\mathcal{L}(e_1), \mathcal{L}(e_2)$, do not contain ε,
$\text{FIRST}(e_1) \cap \text{FIRST}(e_2) = \emptyset$
implies $\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)) = \emptyset$.

This is LL(1) for grammar without ε.
Each choice in such grammar is safe.
The two interpretations are equivalent.
To go beyond LL(1), we shall look at first *expressions* rather than first *letters*.
\[
S = X \mid Y \\
X = Z \mid V \\
Y = WX \\
Z = a \mid b \\
V = b \mid T \\
W = d \mid U \\
T = cV \\
U = cW
\]
Computing FIRST

$S = X \mid Y$
$X = Z \mid V$
$Y = WX$
$Z = a \mid b$
$V = b \mid T$
$W = d \mid U$
$T = cV$
$U = cW$

$\text{FIRST}(X) = \{a, b, c\}$
Computing \textsc{First}

\begin{align*}
S &= X \mid Y \\
X &= Z \mid V \\
Y &= WX \\
Z &= a \mid b \\
V &= b \mid T \\
W &= d \mid U \\
T &= cV \\
U &= cW
\end{align*}

\textsc{First}(X) = \{a, b, c\}
\textsc{First}(Y) = \{c, d\}
Computing FIRST

\[S = X \mid Y \]
\[X = Z \mid V \]
\[Y = W X \]
\[Z = a \mid b \]
\[V = b \mid T \]
\[W = d \mid U \]
\[T = c V \]
\[U = c W \]

\(\text{FIRST}(X) = \{a, b, c\} \)
\(\text{FIRST}(Y) = \{c, d\} \)
\(\{a, b, c\} \cap \{c, d\} \neq \emptyset : S = X \mid Y \) is not LL(1).
Truncated computation of FIRST

\[S = X \mid Y \]
\[X = Z \mid V \]
\[Y = WX \]
\[Z = a \mid b \]
\[V = b \mid T \]
\[W = d \mid U \]
\[T = cV \]
\[U = cW \]
Truncated computation of FIRST

\[
S = X | Y \\
X = Z | V \\
Y = WX \\
Z = a | b \\
V = b | T \\
W = d | U \\
T = cV \\
U = cW
\]

Each word in \(\mathcal{L}(X) \) has a prefix in \(\{a, b\} \cup \mathcal{L}(T) = a \cup c^*b \).
Truncated computation of \textsc{First}

\[
\begin{align*}
S &= X \mid Y \\
X &= Z \mid V \\
Y &= WX \\
Z &= a \mid b \\
V &= b \mid T \\
W &= d \mid U \\
T &= cV \\
U &= cW
\end{align*}
\]

Each word in \(\mathcal{L}(X) \) has a prefix in \(\{a, b\} \cup \mathcal{L}(T) = a \cup c^*b \).
Each word in \(\mathcal{L}(Y) \) has a prefix in \(\{d\} \cup \mathcal{L}(U) = d^*b \).
Approximation by first expressions

Each word in \(\mathcal{L}(X) \) has a prefix in \(a \cup c^*b \).
Each word in \(\mathcal{L}(Y) \) has a prefix in \(d^*b \).

\[
\begin{align*}
\mathcal{L}(X) &= (a \cup c^*b)(\ldots) \\
\mathcal{L}(Y) &= (c^*d)(\ldots)
\end{align*}
\]
Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^*b$.
Each word in $\mathcal{L}(Y)$ has a prefix in d^*b.

$\mathcal{L}(X) = (a \cup c^*b)(\ldots)$

$\mathcal{L}(Y) = (c^*d)(\ldots)$

$\mathcal{L}(X) \cap \text{Pref}(\mathcal{L}(Y) \text{Tail}(S))$

$= (a \cup c^*b)(\ldots) \cap \text{Pref}((c^*d)(\ldots)(\ldots))$
Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^* b$.
Each word in $\mathcal{L}(Y)$ has a prefix in $d^* b$.

$\mathcal{L}(X) = (a \cup c^* b)(\ldots)$
$\mathcal{L}(Y) = (c^* d)(\ldots)$

$\mathcal{L}(X) \cap \text{Pref}(\mathcal{L}(Y) \text{Tail}(S))$
\hspace{1cm} = (a \cup c^* b)(\ldots) \cap \text{Pref}((c^* d)(\ldots)(\ldots))$

No word in $a \cup c^* b$ is a prefix of word in $c^* d$ and vice-versa.
Each word in $\mathcal{L}(X)$ has a prefix in $a \cup c^* b$.
Each word in $\mathcal{L}(Y)$ has a prefix in $d^* b$.

$L(X) = (a \cup c^* b)(\ldots)$
$L(Y) = (c^* d)(\ldots)$

$L(X) \cap \text{Pref}(L(Y) \text{ Tail}(S))$
\hspace{1cm} = (a \cup c^* b)(\ldots) \cap \text{Pref}((c^* d)(\ldots)(\ldots))$

No word in $a \cup c^* b$ is a prefix of word in $c^* d$ and vice-versa.
The intersection is empty: $S = X|Y$ is safe.
Some terminology

X starts with a, b, or T:
"X has a, b, and T as possible first expressions".

$\{a, b, T\} \sqsubseteq X$
Some terminology

X starts with a, b, or T:
"X has a, b, and T as possible first expressions".

$\{a, b, T\} \subseteq X$

No word in a, b, or T is a prefix of a word in d or U and vice-versa:
"$\{a, b, T\}$ and $\{d, U\}$ are exclusive".

$\{a, b, T\} \preceq \{d, U\}$
If $\varepsilon \notin e_1$ and $\varepsilon \notin e_2$
and there exist $\text{FIRST}_1 \sqsubseteq e_1$, $\text{FIRST}_2 \sqsubseteq e_2$
such that $\text{FIRST}_1 \asymp \text{FIRST}_2$
then $A = e_1 | e_2$ is safe.
The two interpretations of an ε-free grammar are equivalent if for every Choice $A = e_1 | e_2$, e_1 and e_2 have exclusive sets of first expressions.
(Good news) Grammar with ε is easy to handle. This involves first expressions of Tail(A), that are obtained using the classical computation of FOLLOW.
(Good news) Grammar with ε is easy to handle. This involves first expressions of $\text{Tail}(A)$, that are obtained using the classical computation of FOLLOW.

(Good news) The results for simple grammar are easily extended to full EBNF / PEG.
Final remarks

- (Good news) Grammar with ε is easy to handle. This involves first expressions of $\text{Tail}(A)$, that are obtained using the classical computation of FOLLOW.
- (Good news) The results for simple grammar are easily extended to full EBNF / PEG.
- (Good news) The possible sets of first expressions are easily obtained in a mechanical way.
Final remarks

- (Good news) Grammar with ε is easy to handle. This involves first expressions of Tail(A), that are obtained using the classical computation of FOLLOW.

- (Good news) The results for simple grammar are easily extended to full EBNF / PEG.

- (Good news) The possible sets of first expressions are easily obtained in a mechanical way.

- (Bad news) Checking that they are exclusive is not easy: it is undecidable in general case (but we may hope first expressions are simple enough to be decidable.)
S = (aa|a)b (that is: S = Xb, X = aa|a.)
S = (aa|a)b (that is: S = Xb, X = aa|a.)

\(\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(X)) = aa \cap \text{Pref}(ab) = \emptyset. \)
S = (aa|a)b (that is: S = Xb, X = aa|a.)

\[\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(X)) = aa \cap \text{Pref}(ab) = \emptyset. \]

X is safe. Both interpretations accept \{aab,ab\}.
S = (aa|a)b (that is: S = Xb, X = aa|a.)

\[\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(X)) = aa \cap \text{Pref}(ab) = \emptyset. \]

X is safe. Both interpretations accept \{aab,ab\}.

Sets of first expressions in X: \{aa\} and \{a\}. Not exclusive!
Final final remark

\[S = (aa|a)b \quad \text{(that is: } S = Xb, \ X = aa|a.) \]

\[\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(X)) = aa \cap \text{Pref}(ab) = \emptyset. \]

\(X \) is safe. Both interpretations accept \{aab,ab\}.

Sets of first expressions in \(X \): \{aa\} and \{a\}. Not exclusive!

There is more to squeeze out of \(\mathcal{L}(e_1) \cap \text{Pref}(\mathcal{L}(e_2) \text{Tail}(A)). \)
That’s all

Thanks for your attention!