
Left recursion by recursive ascent

Roman R. Redziejowski

Abstract

Recursive-descent parsers can not handle left recursion, and several solutions to this problem
have been suggested. This paper presents yet another solution. The idea is to modify recursive-
descent parser so that it reconstructs left-recursive portions of syntax tree bottom-up, by ”recursive
ascent”.

1 Introduction

Recursive-descent parser is a collection of ”parsing procedures” that call each other recursively, mim-
icking the derivation process. This simple scheme cannot beapplied if the grammar is left-recursive: a
parsing procedure may indefinitely call itself, every time facing the same input. Some solutions have
been suggested, and they are outlined in Section 9 at the end.We present here yet another approach.
We view parsing as the process of reconstructing the syntax tree of given string. For this purpose, we
equip parsing procedures with ”semantic actions” that explicitly produce that tree. Recursive descent re-
constructs syntax tree starting from the top. We suggest to reconstruct left-recursive portions of the tree
bottom-up, by a process that we call ”recursive ascent”. This is also done by procedures that call each
other recursively and have their own semantic actions. These procedures can be regarded as new parsing
procedures. We incorporate them into the recursive-descent parser, and the result is recursive-descent
parser for a new grammar, referred to as the ”dual grammar”. The dual grammar is not left-recursive,
and its parser produces syntax tree for the original grammar.

In Section 2 we recall the necessary notions: BNF grammar, derivation, and syntax tree. In Sec-
tion 3 we recall the idea of recursive-descent parser and introduce ”semantic actions” that reconstruct
the syntax tree. After introducing the necessary concepts in Section 4, we introduce in Section 5 the
idea of recursive ascent together with procedures to perform it. They are illustrated by two examples in
section 6. In Section 7 we point out that the procedures just defined are parsing procedures for dual gram-
mar. Two Propositions state the essential properties of that grammar. Section 8 looks at implementation
of choice expressions, Section 9 outlines other known solutions. Some unsolved problems are discussed
in Section 10. Proofs of the Propositions are given in the Appendix.

2 The grammar

We consider a BNF-like grammarG = (N,Σ,E, E , Ns) with setN of non-terminals, setΣ of terminals,
setE of expressions, functionE from non-terminals to expressions, and thestart symbolNs ∈ N.
An expression is one of these:

– a ∈ Σ (”terminal”),
– N ∈ N (”non-terminal”),
– e1 . . . en (”sequence”),
– e1| . . . |en (”choice”),

1

where each ofei is an expression. The functionE is defined by a set of rules of the formN → e, where
e is the expression assigned byE to non-terminalN . We often writeN → e to meane = E(N). In
the following, expressionsa ∈ Σ andN ∈ N will be viewed as special cases of choice expression with
n = 1. We do not include empty stringε among expressions. The problems caused by it and suggested
solutions are discussed in Section 10.

Non-terminalN → e1 . . . en derivesthe stringe1 . . . en of symbols, whileN → e1| . . . |en derives
one ofe1, . . . , en. The derivation is repeated to obtain a string of terminals.This process is represented
by syntax tree. The set of all strings derived fromN ∈ N is called thelanguageof N and is denoted
byL(N). Figures 1 and 2 are examples of grammarG, showing syntax trees of strings derived from the
start symbol.

N = {Z,A,A1,B,B1,B2}
Σ = {a,b,x,y}
Ns = Z

Z → x A y

A → A1 | a

A1→ B a

B → B1 | B2 | b

B1→ A b

B2→ B b

Z

x yA

A1

aB

B2

bB

B1

bA

a

Figure 1: Example of grammar G and syntax tree of ’xabbay’

N = {E,E1,F,F1}
Σ = {a,+,*}
Ns = E

E → E1 | F

E1→ E + F

F → F1 | a

F1→ F * b

E

E1

E F+

F

F1

F b*

a

F1

F b*

a

Figure 2: Example of grammar G and syntax tree of ’a*b+a*b’

3 Recursive descent

The idea of recursive-descent parsing is that each terminaland each non-terminal is assigned aparsing
procedure. The procedure eitherconsumessome prefix of given input, or fails and leaves the input
unchanged. Thus:

– Procedure for terminala consumesa if the input begins witha. Otherwise it fails.
– Procedure forN → e1 . . . en calls the procedurese1, . . . , en, in this order, and fails if any of them

fails.
– Procedure forN → e1| . . . |en somehow selects and calls one of the procedurese1, . . . , en that

succeds on the input. It fails if none of them can succeed. (The way of making this selection is
discussed in Section 8.)

2

An important property of this metod of parsing is close connection between the grammar and the parsing
procedures. Namely, grammar rulesN → e1 . . . en andN → e1| . . . |en may be alternatively regarded as
concise representations of parsing procedures, withN being the procedure’s name andei representing a
call to procedureei. The pattern of successful calls to parsing procedures mimics the derivation process,
so successful call to procedureN consumes a prefix belonging toL(N). The informationhow the
consumed string was derived is recorded in some unspecified way.

We begin our construction by making this recording explicit, and suggest that each successful parsing
procedure returns syntax tree of the string it consumed. Forthis purpose, we add to each procedure its
semantic actionto be executed after successful parsing. It is shown below enclosed in braces{}:

N → e1 . . . en {return [N⊳[e1] . . . [en]]} (1)

N → e1| . . . |en {return [N⊳[ei]]} (2)

We denote here by[t] a syntax tree with top nodet, and write[t⊳[t1] . . . [tn]] to indicate thatt has
subtrees[t1], . . . , [tn] as children.

Each successfully called procedureei returns its syntax tree[ei]. If ei is for terminala, it returns syntax
tree[a] of height 0. Procedure (1) returns tree with top nodeN having as children the trees[e1], . . . , [en]
returned by called procedures. Procedure (2) returns tree with top nodeN having as single child the tree
[ei] returned by the selected procedure.

Parsing starts with invoking (1) or (2) for the start symbol.It results in recursive calls to subprocedures
that eventually return syntax trees for the substrings theyconsume. At the end, procedureNs builds and
returns the final result.

Assuming that (2) makes its choice based only on input ahead,this does not work if the grammar
contains left recursion. This is the case for both our examples. IfA choosesA1, andB choosesB1, they
are called again without any input being consumed in between, and thus bound to indefinitely make the
same choices, never returning any result. The situation is similar for E andF.

4 Some definitions

We need some definitions before suggesting how to handle leftrecursion.

ForN ∈ N ande ∈ N ∪ Σ, defineN
first
−→ e to mean that parsing procedure forN may call that fore

on the same input. We have thus:

– If N → e1 . . . en, N
first
−→ e1.

– If N → e1| . . . | en, N
first
−→ ei for 1 ≤ i ≤ n.

Let
First
−→ be the transitive closure of

first
−→. Non-terminalN ∈ N is (left) recursiveif N

First
−→ N . The

set of all recursive non-terminals ofG is denoted byR. All non-terminals in Figure 1 exceptZ, and all
non-terminals in Figure 2 are recursive.

Define relation between recursiveN1, N2 ∈ R that holds ifN1

First
−→ N2

First
−→ N1. This is an equiva-

lence relation that partitionsR into equivalence classes. We call themrecursion classes. The recursion
class ofN is denoted byC(N). All non-terminals in Figure 1 belong to the same class; the grammar of
Figure 2 has two recursion classes:{E,E1} and{F,F1}.

In syntax tree, the leftmost path emanating from any node is achain of nodes connected by
first
−→.

SupposeN1 andN2 belonging to the same recursion classC appear on the same leftmost path. Any

non-terminalN between them must also belong toC, which follows from the fact thatN1

First
−→ N

First
−→

N2

First
−→ N1. It means that members ofC appearing on the same leftmost path must form an uninterrupted

sequence. We call such sequence arecursion pathof classC. The only recursion path in Figure 1 is the

3

whole leftmost path from the firstA without finala. The syntax tree in Figure 2 has two recursion paths,
one starting withE and another withF.

LetN → e1 . . . en be on a recursion path. The next item on the leftmost path ise1, and it must belong

to C(N) to ensureN
First
−→ N . It follows that the last item on a recursion path must beN → e1| . . . |en

where at least one ofei is not a member ofC(N). SuchN is called anexit of C(N), and its alternatives
outsideC(N) are theseedsof C(N). In Figure 1, bothA andB are exits, and the seeds area andb. In
Figure 2,E andF are exits of their respective classes, and the corresponding seeds areF anda.

A non-terminal that can be the start of a recursion path is called anentry of its recursion class. It is
one of these:

– An expression inE(N) of non-recursiveN .
– One of expressionse2, . . . , en of recursiveN → e2 . . . en.
– A seed of another recursion class.
– The start symbol.

The recursion class in Figure 1 hasA as its entry. The recursion classes in Figure 2 haveE andF as their
respective entries.

5 Recursive ascent

To handle left recursion, we suggest that parsing procedurefor entryE does not follow the pattern given
by (1) and (2) above. It still returns syntax tree[E], but builds this tree in a different way.

As noted in the preceding section,[E] has recursion path starting with the entry nodeE and ending
with the exit node followed by a seed. We start with the seed and ascend the recursion path, adding one
node at a time. We reconstruct the side branches when the added node represents sequence expression.
The tree being constructed is local to the invocation of procedureE. We call it ”the plant”, and denote it
by [π].

Sowing the seed

Borrowing the way we used to represent parsing procedures, we outline the new entry procedure as:

E → S {sow [S]} growS {return [π]} . (3)

Here,S represents call to parsing procedure for the seedS. If successful, it returns syntax tree[S], and
semantic actionsow [S] initializes [π] with that tree. This is followed by call to new proceduregrowS,
that continues parsing and grows the plant towards[E]. If it succeeds, the final semantic action returns
the reconstructed tree. The whole procedure fails ifS or growS does.

In general, the recursion classC(E) may have more than one seed, soE has to choose one that matches
the input. To represent this choice, we borrow the syntax of choice expression:

E → S1 {sow [S1]} growS1 {return [π]} | . . . | Sn {sow [Sn]} growSn {return [π]} , (4)

whereS1, . . . , Sn are all seeds ofC(E).

Growing the plant

The plant is grown by recursive procedures, each adding one node and then calling another procedure to
continue growing. This can be sketched as follows:

growR → addP growP. (5)

4

It applies to plant with topR; adds nodeP , and continues to grow the plant that has nowP on top. The

added nodeP is a predecessor ofR in the recursion path, meaningP
first
−→ R. In general,R may have

several predecessorsP satisfyingP
first
−→ R, sogrowR must choose one of them that matches the input.

Again, we represent this in the way we used for choice expression:

growR → addP1 growP1 | . . . | addPn growPn (6)

whereP1, . . . , Pn are all members ofC(E) such thatPi
first
−→ R. We simplify this by introducing new

procedure

$P → addP growP, (7)

so that (6) becomes:

growR → $P1 | . . . | $Pn. (8)

The growing may stop when the plant reachesE. That means, (8) forE must have one more alternative,
”do nothing”, which we represent byε:

growE → $P1 | . . . | $Pn | ε. (9)

Adding a node

OperationaddP is illustrated in Figure 3. It adds nodeP to plant[R].

R

[π]

P → Re2 . . . en

P

R e2 · · · en

add [P⊳[π][e2] . . . [en]]

P → e1| . . . |R| . . . |en

P

R

add [P⊳[π]]

Figure 3: addP

If P → e1e2 . . . en, the added nodeP will have the present plant as the first child. The other children
are obtained by callinge2, . . . , en. Operationadd [P⊳[π][e2] . . . [en]] shown in the Figure adds nodeP
with these children to the plant.

If P → e1| . . . |en, the added nodeP has only one child, namely the present plant. Operationadd [P⊳[π]]
shown in the Figure adds such nodeP to the plant.

Inserting these operations in (7), we obtain:

$P → e2 . . . en {add [P⊳[π][e2] . . . [en]]} growP if P → e1 . . . en, (10)

$P → {add [P⊳[π]]} growP if P → e1| . . . |en. (11)

Multiple entries

The above assumed that each recursion class has only one entry. This is not true for many grammars; for
example, the class of Primary in Java has four entries.
Multiple entries can be handled because calls to entry procedures are nested, so one can keep track of
which one is currently active. The exit alternativeε in growE must be applied only ifE is the currently
active one.

5

6 Examples

Example 1

Applying (1), (4), (8–9), (10–11) to the grammar of Figure 1,replacing calls for ”grow” by their defi-
nitions, and omitting unused procedures, we obtain the procedures shown in Figure 4. We apply them
to string’xabbay’, showing how they construct the syntax tree appearing in theFigure. Numbers on
the left indicate top of the plant after each step. The procedures for choice expressions are assumed to
always make correct choice using some oracle; this will be discussed later in Section 8.

Z → x A y {return [Z⊳[x][A][y]]}
A → a {sow [a]} $A {return [π]}

| b {sow [b]} $B {return [π]}
$A → {add [A⊳[π]]} ($B1 | ε)
$B → {add [B⊳[π]]} ($A1 | $B2)

$A1→ a {add [A1⊳[π][a]]} $A

$B1→ b {add [B1⊳[π][b]]} $B

$B2→ b {add [B2⊳[π][b]]} $B

Z

x yA

A1

aB

B2

bB

B1

bA

a

(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

Figure 4: Procedures and example of parsing for grammar of Figure 1.

1. The parsing starts with procedure for non-recursiveZ that, in the usual way, calls the proceduresx,
A, andy. After consuming’x’, Z appliesA to ’abbay’.

2. ProcedureA chooses its first alternative, appliesa to ’abbay’, leaving’bbay’, and initializes [π]
with [a]. Then it calls$A.

3. Procedure$A adds nodeA on top of [a]. Then it chooses to call$B1.
4. Procedure$B1 appliesb to ’bbay’, leaving’bay’, and creates nodeB1 with children [A] and [b].

Then it calls$B.
5. Procedure$B adds nodeB on top of [B1]. Then it chooses to call$B2.
6. Procedure$B2 appliesb to ’bay’, leaving’ay’, and creates nodeB2 with children [B] and [b].

Then it calls$B.
7. Procedure$B adds nodeB on top of [B2]. Then it chooses to call$A1.
8. Procedure$A1 appliesa to ’ay’, leaving’y’, and creates nodeA1 with children [B] and [a]. Then

it calls$A.
9. Procedure$A adds nodeA on top of [A1]. Then it choosesε, and returns, causing the invoked$A1,

$B, $B2, $B, $B1, $A to terminate one after another. Finally, it returns [A] to Z.
10. ProcedureZ consumes the remaining’y’ and returns the tree[Z⊳[x][A][y]].

6

Example 2

For example of Figure 2, we obtain the procedures shown in Figure 5. We apply them to string’a*b+a*b’,
showing how they construct the syntax tree appearing in the Figure. Numbers indicate top of the plant
after each step.

E → F {sow [F]} $E {return [π]}
$E → {add [E⊳[π]]} ($E1 | ε)
$E1→ + F {add [E1⊳[π][+][F]]} $E

F → a {sow [a]} $F {return [π]}
$F → {add [F⊳[π]]} ($F1 | ε)
$F1→ * b {add [F1⊳[π][*][b]]} $F

E

E1

E F+

F

F1

F b*

a

F1

F b*

a

(15)

(14)

(7)

(5,6)

(4)

(3)

(2)

(12)

(11)

(10)

(9)

Figure 5: Procedures and example of parsing for grammar of Figure 2.

1. ProcedureE calls parsing procedure for its seedF.
2. ProcedureF calls parsing procedure for its seeda, which consumes’a’, leaving’*b+a*b’.

Then it initializes its plant with[a] and calls$F.
3. Procedure$F addsF on top of[a] and chooses to call$F1.
4. Procedure$F1 calls procedures* andb that consume’*b’, leaving’+a*b’.

Then it adds[F1⊳[F][*][b]] on top of[F] and calls$F.
5. Procedure$F addsF on top of[F1] and choosesε, causing the invoked$F1 to terminate.

Then it returns to procedureF.
6. ProcedureF returns toE the syntax tree[F] of ’a*b’.

ProcedureE initializes its plant with[F]. What has been the plant ofF becomes now the seed ofE.
ProcedureE calls then$E.

7. Procedure$E addsE on top of[F] and decides to call$E1.
8. Procedure$E1 calls procedures+ andF. The first consumes’+’, leaving’a*b’.
9. ProcedureF calls parsing procedure for its seeda, which consumes’a’, leaving’*b’. It initializes

its own plant with[a]. We have now two plants: that of procedureE, for the moment left waiting,
and the new plant ofF. ProcedureF calls$F.

10. Procedure$F addsF on top of[a]. Then it chooses to call$F1.
11. Procedure$F1 calls procedures* andb that consume the remaining’*b’.

Then it adds[F1⊳[F][*][b]] on top of[F] and calls$F.
12. Procedure$F addsF on top of[F1] and choosesε, causing the invoked$F1 to terminate.

Then it returns to procedureF.
13. ProcedureF returns toE the syntax tree[F] of ’a*b’.
14. Procedure$E1 addsE1⊳[E][+][F]] on top of[E]. The plant ofF becomes now a branch of the

plant ofE. The procedure calls then$E.
15. Procedure$E addsE on top of$E1 and choosesε, causing the invoked$E1 to terminate. Then it

returns to procedureE.
16. ProcedureE terminates, returning the constructed tree[E].

7

7 The dual grammar

Consider now the procedures from in Figure 4 with their semantic actions made invisible:

Z → x A y

A → a $A | b $B

$A → $B1 | ε
$B → $A1 | $B2

$A1→ a $A

$B1→ b $B

$B2→ b $B

This is a new grammar with the set{Z,A,$A,$B,$A1,$B1,$B2} of non-terminals. Reversing what was
said at the beginning of Section 3, we discover that procedures in Figure 4 are parsing procedures for
this grammar. It means that our parsing with recursive ascent is actually performed as recursive descent
for a new grammar. This new grammar is in the following referred to asdual grammarfor the grammar
of Figure 1. The procedures differ from (1–2) by having special semantic actions to construct syntax tree
according to the original grammar. The dual grammar for grammar of Figure 2 is:

E → F $E

$E → $E1 | ε
$E1→ + F $E

F → a $F

$F → $F1 | ε
$F1→ * a $F

One can see that dual grammar is in general constructed as follows:

– For each entryE create ruleE → S1 growS1 | . . . | Sn growSn,
– Replace each recursiveR → e1e2 . . . en by $R → e2 . . . en growR,
– Replace each recursiveR → e1 | . . . | en by$R → growR,
– ReplacegrowR by $P1 | . . . | $Pm if R 6= E,
– ReplacegrowE by $P1 | . . . | $Pm | ε,

where

– S1, . . . , Sn are all seeds ofC(E),

– P1, . . . , Pm are all members ofC(E) such thatPi
first
−→ R.

The dual grammar is an n-tupleD = (ND,Σ,ED, ED, Ns). Its setND consists of:

– The non-recursive members ofN;
– The entries to recursion classes;
– The new non-terminals with $-names.

In the following, the set of all non-recursive members ofN is denoted byR, and the set of all entries
by RE. They appear as non-terminals in bothG andD. The setR ∪ RE of these common symbols
is denoted byNC . The languageLD(N) of N ∈ ND is the set of all terminal strings derived fromN
according to the rules ofD.

8

The two important facts about the dual grammar are:

Proposition 1. The dual grammar is left-recursive only if the original grammar contains a

cycle, that is, a non-terminal that derives itself.

Proof is found in the Appendix.

Proposition 2. LD(N) = L(N) for all N ∈ NC .

Proof is found in the Appendix.

8 Implementing the choices

One can see that the choices (4) and (8–9) became standard choice expressions in the dual grammar. The
dual grammar contains also choice expressions inherited from the original grammar. So far, we did not
say anything about the way procedures for these expression decide which alternative to choose.

A safe way is to systematically check all choices, backtracking after each failure, until we find the
correct one (or find that there is none). This, however, takesexponential time.

There exist shortcuts that give reasonable processing time. The problem is that each is applicable only
to a restricted class of grammars. IfD is outside this class, the parser will reject some strings ofLD(Ns).

One shortcut is to look at the next input terminal. This is very fast, and involves no backtracking, but
requires that strings derived from different alternativesbegin with different terminals. This is known as
the LL(1) property. (As a matter of fact, both dual grammars in our examples have this property.)

Another shortcut, not much investigated, is to look at inputwithin the reach of one parsing procedure.
It requires that some procedures eventually called from different alternatives never succeed on the same
input. This property of the grammar is suggested to be calledLL(1p) [8].

Yet another one is limited backtracking, called ”fast-back” in [5], page 57, and recently exploited in
Parsing Expression Grammar [3]. Here the choice expressiontries different alternatives and accepts the
first successful one. Backtracking is limited to sequence expressions. Using the technique of ”packrat
parsing” [2], one can make it work in linear time.
Limited backtracking requires that all choices after first successful one must lead to failure. We say that
grammar having this property is fast-back safe. A sufficientcondition for fast-back safety is given in [9].
(Note that this property depends on the order of alternatives in choice expressions.)

Proposition 2 implies that if grammarD is safe for the chosen method (LL(1), LL(1p), respectively
fast-back safe), the recursive-descent parser forD is a correct parser forG.

A subject of further research is how to translate the above properties of grammarD into equivalent
properties of grammarG.

9 Previous work

Our method is inspired by one outlined by Hill in [4]. His report describes only the algorithm, but it is
clear that it follows from the idea of reconstructing the recursion path. Each entry of recursion class is
represented by data structure called the ”grower”. The grower contains all seeds of its recursion class,
and for each seed, the chains of its parents. Parsing procedure for the entry consists of inretpreting the
grower; it starts with the seeds and follows their parent chains.

9

The traditional way of eliminating left recursion is to rewrite the grammar so that left recursion is
replaced by right recursion. It can be found, for example, in[1], page 176. It consists of replacing

A → A a | b (12)

by

A → b A’

A’ → a A’ | ε .

Figure 6 shows the result of this rewriting for a grammar given in [11] as an example of intersecting
left-recursion loops. The process is cumbersome and produces large results; most important, it loses the
spirit of the grammar. For simple grammars, the result is very similar to our dual grammar. But, our dual
grammar, in spite of apparently losing the spirit, producescorrect syntax tree of the original grammar.
And, as can be seen from the illustration, it is obtained by a rather straightforward rewriting of syntax
rules.

Grammar

E → F n | n

F → E + x | G -

G → H m | E

H → G y

Classic rewrite

E → F n | n

F → (n + x | G -) F’

F’→ (n + x) F’ | ε
G → (H m | n | (n + x) F’ n) G’

G’→ (- F’ n) G’ | ε
H → (n G’ y | (n + x) F’ n G’ y) H’

H’→ (m G’ y) H’ | ε

Dual grammar

E → n $E

$E → + x $F | $G | ε
$F → n $E

$G → - $F | $H

$H → y m $G

Figure 6: Example of classic rewrite

In [13], Warth and al. suggested how to handle left recursionin Parsing Expression Grammar (PEG) by
modifying the packrat parser. The principle of packrat parsing is that the result of each parsing procedure
is saved in a ”memoization table”. The table is consulted before each new call, and if a result is found
for the same position in input, it is used directly instead ofcalling the procedure.
The idea can be explained on the example grammar (12). Beforethe first call toA, we save ”failed” as
the result ofA at the current position. ProcedureA starts with the alternativeAa which requires callingA
and thena. But the result of callingA is already in the table; as it is ”failed”, the alternativeAa fails, and
A callsb. If it succeeds, we save’b’ as the new result ofA.
We backtrack and callA again. AlternativeAa obtains now’b’ as the result ofA and callsa. If it
succeeds, we save’ba’ as the new result ofA. This is referred to as ”growing the seed”.
We repeat this as long asa in Aa succeeds. When it fails, we stop the repetition and are left with the
result’ba...a’ of A in the table.

In [12], Tratt indicated that this method does not require packrat parser, only a table for results of left-
recursive procedures. Also, that left-recursive non-terminals can be detected by analyzing the grammar.

Medeiros et al. [7] introduced the notion of ”bounded left recursion”. The idea can again be explained
on the example grammar (12). ProcedureA is required to try alternativeAa exactly n times before
choosingb. The string thus consumed is saved asAn. We call procedureA repeatedly with increasing
values of the ”bound”n, obtainingA0, A1, A2, etc..
Left part of Figure 7 illustrates howA2 is obtained for input’baax’. The arrows represent successful
calls. One can see from the Figure how this is obtained from savedA1 = ’ba’, and this fromA0 = ’b’.
Right part of Figure 7 shows what happens forn = 3. Dotted arrows represent failing calls. Thea in the

10

A

Aa

aAa

b a

A2 = ’baa’

A

bAa

xAa

aAa

b a

A3 = ’b’

Figure 7: Example of bounded left recursion applied to ’baax’

highestAa encounters’x’ and fails, and so doesAa. ProcedureA, receiving failure fromAa, consumes
’b’, giving A3 = ’b’. This is the signal to stop repetition and return the savedA2.

The methods from [12, 13] and [7] use memoization table; theyrepeatedly evaluate the left-recursive
procedure in the process of growing the seed or incrementingthe bound. None of these is the case with
our approach.

All methods [4, 7, 12, 13] must handle situations more complex than the elementary example (12),
like indirect and nested left recursion. They add a substantial amount of overhead to the mechanism of
procedure call. This is not the case with our method, where all complexity is delegated to the task of
constructing the dual grammar. The only overhead are the semantic actions of constructing the syntax
tree, but they must also be invisibly included in the above methods to record the pattern of procedure
calls.

In principle, we have a recursive-descent parser with simple calls to parsing procedures. If so desired,
it can use limited backtracking implemented with packrat technology. In addition, we offer a way to see
if the chosen method of handling choice expressions resultsin correct parser. None of the cited solutions
gives any hint on how to do it.

10 Unsolved problems

We did not include empty wordε in our grammar. (It appeared in the dual grammar, but only with
a special function.) The result of addingε is that some expressions may derive empty string. These
expressions are referred to asnullable, and can be identified as such by analyzing the grammar.

Nullablee1 . . . ek in N → e1 . . . en and nullableei in N → e1| . . . |en require new definition of
first
−→.

If e1 . . . ek for k < n is nullable inN → e1 . . . en, we haveN
first
−→ ei for ≤ i ≤ k + 1. If all ei are

nullable, we have to addN
first
−→ τN whereτN is a new non-terminal that derives all strings that may

follow N . If any ei is nullable inN → e1| . . . |en, we haveN
first
−→ ei for ≤ i ≤ n, andN

first
−→ τN .

The problem is thatN
First
−→ N identifies now only apossible left recursion. An example is

A → (a|ε)Ab|c whereA
First
−→ A, but A is left-recursive only if input does not start witha. This is

known as ”hidden” left recursion. Our recursive ascent cannot be defined for hidden left recursion, so
we have to check fore2 in N → e1 . . . en being potentially left-recursive and signal it as an error.The
problem can be solved by redefining the grammar as

A → (Ab|c) | (aAb|c).

Nullable seed and nullablee2 . . . en in recursiveN → e1e2 . . . en invalidate proof of Proposition 1.
That means the dual grammar can be left-recursive even ifG does not have a cycle.

11

Another kind of unsolved problem isE → E+E|n, which results in a right-recursive parse forE. This
is so because the secondE invoked by (10) gobbles up all input before the ascent can continue.

The problem withE → E+E|n was signalled by Tratt in [12]. In fact, the right-recursiveresult is
correct, but the grammar is ambiguous; Tratt explains why the other, left-recursive, parse is desirable,
and offers a solution for direct left recursion.

A solution proposed in [7] extends the grammar by assigning ”priorities” to different occurrences ofE.
This opens new possibilities: a simple way of defining operator precedence. It is further exploited in [6].

11 Acknowledgements

This version is the result of comments from two anonymous referees and comments to presentation at
CS&P’2021 workshop [10].

A Proof of Proposition 1

For N ∈ ND ande ∈ ND ∪ Σ, defineN
firstD
−→ e to mean that parsing procedureN may call parsing

proceduree on the same input:

(a) ForN ∈ R,
firstD
−→ is the same as

first
−→.

(b) ForN ∈ RE, N
firstD
−→ S for each seedS of C(N).

(c) For $R → e2 . . . engrowR, $R
firstD
−→ e2.

(d) For $R → growR, $R
firstD
−→ $Pi for eachPi ∈ C(R) such thatPi

first
−→ R.

SupposeD is left-recursive, that is, there existN1, N2, . . . , Nk ∈ ND whereN1

firstD
−→ . . . N2

firstD
−→ . . .

firstD
−→

Nk andNk = N1. We start by showing that none of them can be inNC .

Assume thatN1 ∈ NC . That meansN1 is either inR or inRE.
SupposeN1 ∈ R. BecauseN1 is the same in both grammars, we haveED(N1) = E(N1), soN2 is also

in N, and thus inNC . FromN1

firstD
−→ N2 follows N1

first
−→ N2.

SupposeN1 ∈ RE. According to (b),N2 is a seed ofC(N1), which is either non-recursive or an entry,

and thus is inNC . For a seedN2 of C(N1) holdsN1

First
−→ N2.

The above can be repeated withN2, . . . , Nk−1 to check thatNi ∈ NC for all 1 ≤ i ≤ k andNi
First
−→ Ni+1

for 1 ≤ i < k. AsN1 = Nk, the latter means that none ofNi belongs toR, so they must all be inRE .
Moreover, they are all in the same recursion class,C(N1). According to (b),N2 is a seed ofC(N1), that
cannot be a member ofC(N1). This is a contradiction, soN1 /∈ NC , and this holds for the remaining
N2, . . . , Nk−1.

It follows that eachNi is a $-non-terminal ofD. It cannot be that listed under (c) because thenNi+1 is
e2 which belongs toNC .
Hence, eachNi must have the form listed under (d). It follows that ifNi = $Ri for someRi, Ni+1

must be $Ri+1 such thatRi+1

first
−→ Ri. Thus, exists in grammarG a sequence of non-terminalsRk

first
−→

. . .
first
−→ R2

first
−→ R1 with Rk = R1. Each of them has choice statement asE(Ri) and can derive itself in

k − 1 steps. �

B Proof of Proposition 2

We show that each string derived fromN ∈ NC ∪ Σ according to grammarG can be derived according
to grammarD and vice-versa. We say that derivation has heighth to mean that its syntax tree has height
h. The proof is by induction on that height.

12

Induction base is the same in both directions: derivation ofheight 0. We consider terminal to be
derived from itself with syntax tree of height 0. TheG- andD-derivations are identical.

The following two lemmas provide induction step for the two derivations.

Lemma 1. Assume that each string having G-derivation of height h ≥ 0 from N ∈ NC ∪Σ has

a D-derivation from N . Then the same holds for each string with G-derivation of height h+ 1.

Proof. Take any stringw havingG-derivation fromN ∈ NC of heighth+ 1.

(Case 1)N ∈ R.
If N → e1 . . . em, all ej are inNC andw = w1 . . . wm where eachwj isG-derived fromej by derivation
of heighth or less. WeD-derivee1 . . . em from N , and then, according to induction hypothesis,D-
derivew = w1 . . . wm from e1 . . . em.
If N → e1| . . . |em, w is G-derived from one ofej by derivation of heighth or less. WeD-deriveej
from N , and then, according to induction hypothesis,D-derivew from ej .

(Case 2)N ∈ RE.
TheG-derivation ofw is shown in the left part of Figure 8. One can see thatw = w0 . . . wn wherew0

is G-derived from a seed and for1 ≤ i ≤, wi is eitherG-derived frome2 . . . em (if Ri → e1 . . . em)
or is empty wordε (if Ri → e1| . . . |em). All theseG-derivations are from members ofNC and have
heighth or less. Thus, by induction hypothesis, exist corresponding D-derivations ofw0, . . . , wn. The
D-derivation ofw using these results is shown as the right part of Figure 8. �

Rn

Rn−1

. . .

Ri

. . .

R2

R1

R0

N =

S =

wn

wn−1

wi

w2

w1

w0

N

$R1

$R2

. . .

$Ri

. . .

$Rn−1

$Rn

ε

S

w1w0

w2

wi

wn−1

wn

Figure 8: G-derivation and D-derivation from E. w0 is derived from the seed. Otherwise wi is
derived from e2, . . . , em for sequence Ri or ε for choice Ri.

Lemma 2. Assume that each string having D-derivation of height h ≥ 0 from N ∈ NC ∪Σ has

a G-derivation from N . Then the same holds for each string with D-derivation of height h+ 1.

Proof. (The proof is a mirror image of the proof of Lemma 1, but we spell it out.) Take any stringw
havingD-derivation fromN ∈ NC of heighth+ 1.

(Case 1)N ∈ R.
If N → e1 . . . em, all ej are inNC andw = w1 . . . wm where eachwj isD-derived fromej by derivation
of heighth or less. WeG-derivee1 . . . em fromN , and then, according to induction hypothesis,G-derive
w = w1 . . . wm from e1 . . . em.

13

If N → e1| . . . |em, w is D-derived from one ofej by derivation of heighth or less. WeG-deriveej
from N , and then, according to induction hypothesis,G-derivew from ej .

(Case 2)N ∈ RE.
TheD-derivation ofw is shown in the right part of Figure 8. One can see thatw = w0 . . . wn wherew0

is D-derived from a seed and for1 ≤ i ≤, wi is eitherD-derived frome2 . . . em (if Ri → e1 . . . em)
or is empty wordε (if Ri → e1| . . . |em). All theseD-derivations are from members ofNC and have
heighth or less. Thus, by induction hypothesis, exist corresponding G-derivations ofw0, . . . , wn. The
G-derivation ofw using these results is shown as the left part of Figure 8. �

References

[1] Aho, A. V., Sethi, R., Ullman, J. D.:Compilers, Principles, Techniques, and Tools, Addison-
Wesley, 1987.

[2] Ford, B.: Packrat parsing: simple, powerful, lazy, linear time, functional pearl,Proceedings of
the Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP ’02),
Pittsburgh, Pennsylvania, USA, October 4-6, 2002(M. Wand, S. L. P. Jones, Eds.), ACM, 2002.

[3] Ford, B.: Parsing Expression Grammars: A Recognition-Based Syntactic Foundation,Proceedings
of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2004(N. D. Jones, X. Leroy, Eds.), ACM, Venice, Italy, 14–16 January 2004.

[4] Hill, O.: Support for Left-Recursive PEGs, 2010,
https://github.com/orlandohill/peg-left-recursion.

[5] Hopgood, F. R. A.:Compiling Techniques, MacDonald/Elsevier, 1969.

[6] Laurent, N., Mens, K.: Parsing Expression Grammars MadePractical,SLE 2015: Proceedings of
the 2015 ACM SIGPLAN International Conference on Software Language Engineering, October
2015.

[7] Medeiros, S., Mascarenhas, F., Ierusalimschy, R.: LeftRecursion in Parsing Expression Grammars,
Science of Computer Programming, 96, 2014, 177–190.

[8] Redziejowski, R. R.: From EBNF to PEG,Fundamenta Informaticae, 128, 2013, 177–191.

[9] Redziejowski, R. R.: More about converting BNF to PEG,Fundamenta Informaticae, 133(2-3),
2014, 177–191.

[10] Redziejowski, R. R.: Left Recursion by Recursive Ascent, Proceedings of the 29th International
Workshop on Concurrency, Specification and Programming (CS&P 2021)(H. Schlingloff, T. Vogel,
Eds.), 27–29 September 2021,http://ceur-ws.org/Vol-2951.

[11] Sigaud, P.: Left Recursion, 2019,
https://github.com/PhilippeSigaud/Pegged/wiki/Left-Recursion.

[12] Tratt, L.: Direct left-recursive parsing expression grammars, Technical Report EIS-10-01, School
of Engineering and Information Sciences, Middlesex University, October 2010.

[13] Warth, A., Douglass, J. R., Millstein, T. D.: Packrat parsers can support left recursion,Proceed-
ings of the 2008 ACM SIGPLAN Symposium on Partial Evaluationand Semantics-based Program
Manipulation, PEPM 2008, San Francisco, California, USA, January 7-8, 2008.

14

